/\ D —/\ 4‘(‘ 20 | S —
lrrTiTnmmemm i - o

VD
| NAVAL P(H?TGHLADWLATT)SCHHCK]L i
o | Monterey, California

ELECTE
FEB18 IQQZ@

3, THESIS

DESIGN OF A GRAPHICAL USER INTERFACE
FOR A MULTIMEDIA DBMS:
QUERY MANAGEMENT FACILITY

by
Charles B. Peabody
September, 1991

Thesis Advisor; Vincent Y. Lum
Thesis Co-Advisor: C. Thomas Y. Wu

Approved for public release; distribution is unlimited.
Best Available Copy

| 1 —03971
92 2 4 16K AN

REPORT DOCUMENTATION PAGE

[Ta. REPORT SECURITY CLASSIFICATION . RESTAIC TIVE MARKINGS.
. UNCLASSIFIED [™
"2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILTTY OF REPORT.
2 DEC RSP IC AT OOWNGTADTNG SCREDUTE Approved for public release;
) distribution is unlimited
4 PERFORMING ORGANIZATION REFORT NONBERS) ~ONTTORING ORGANTZATION FEFORT NUMBERTS)
E NIMEUFEEFFURMEEGHEWIZI‘HBN —] 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
omputer Science Dept. (it applicable) ilaval Postgraduate School
Naval Postgraduate School Cs37
6c. ADDRESS (City, Stats, and ZIP Code) 70. ADDRESS (City, State, and ZIP Code)
 ORGANIZATION (if applicable)
8¢. ADDRESS (City, State, and ZIP Code) 0. SOURCE OF FUNDING NUMBERS —
ELEMENT NO. | NO. NO. ACCESSION NO.

DESIEN G R SR AT BYER INTERFACE FOR A MULTIMEDIA DBMS: QUERY MANAGEMENT FACILITY (U)

2 PERSONAL AUTHOR
-’;'ﬁ\:. , aries Brown

3 TYPE GF REPOR T35 TINE COVERED 4. DATE OF REPORT (Vear, Month, Day) V5. PACGE COUR
aster s Thesis From 9789 T0_991_ 91 “S%%Ttggbglgro 09 iYw Wonth. Day) 139

UPPLEMENTARY NO

The views expressed in tlus thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the United States Government.

17 COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identity by biock number) _
) GROUP susonoop | GUL MDBMS, Graphical Query Facility, Retrieval, Multimedia Database
— — — | Management System, User Interface.

19. ABSTRACT (C (Conmonmdmcassarymm fy by block number)
This thesis presents criteria and necessary features by which to evaluate and design a good graphical user interface

(GUD) for a Multimedia Database Management System (MDBMS). This material is also applicable to a traditional
DBMS. Included in the thesis is the specification for a Query Management Facility (QMF) for a MDBMS user inter-
face. The nature and benefits of the GUI environment, requires that we consider GUI concepts early in the user inter-
face conceptualization and design. In today’s DBMS user interfaces, these GUI concepts are for the most part applied
as an after-thought. This is a critical mistake. Early incorporation of GUI capabilities along with established user in-
terface principles results in a superior user interface. The QMF presented herein is one such interface. It combines the
ideas of simple operations and data flow to allow the user to specify his query. Additional concepts used include: pic-
ture of the database schema, picture of the developing query, selectable objects, direct manipulation, piecemeal query
specification, display of intermediate results and pre-defined joins. The resulting QMF is simple to use and enables
the flexible expression of the simple as well as the complex database query.

0. DISTRIBUTION/AVAILAB Y O

B UNCLASSIFIED/UNLIMITED [] SAMEAS RPT. [] OTIC USERS leCLASSIFIED

o PR ROVOO, 7% ISP HONE e Ara o [B G v

Approved for public release; distribution is unlimited.
DESIGN OF A GRAPHICAL USER INTERFACE
FOR A MULTIMEDIA DBMS :

QUERY MANAGEMENT FACILITY
by
Charles B. Peabody
Captain, United States Marine Corps

B.S., University of New Hampshire

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL

September 1991
Author: djgxﬁa ‘)\)7 : 2

Charles B. Peabody

Approved by: et % D e

Vincent Y. Lm/n, Thesis Advisor

C. Thomas Wha, Thesis Co-Advisor

CAEATST™

Robert McGhee, Chairman
Department of Computer Science

i1

ABSTRACT

This thesis presents criteria and necessary features by which to evaluate and design
a good graphical user interface (GUI) for a Multimedia Database Management System
(MDBMS). This material is also applicable to a traditional DBMS. Included in the thesis is
the specification for a Query Management Facility (QMF) for a MDBMS user interface. The
nature and benefits of the GUI environment, requires that we consider GUI concepts early
in the user interface conceptualization and design. In today’s DBMS user interfaces, these
GUI concepts are for the most part applied as an after-thought. This is a critical mistake.
Early incorporation of GUI capabilities along with established user interface principles
resulis in a superior user interface. The QMF presented herein is one such interface. It
combines the ideas of simple operations and data flow to allow the user to specify his
query. Additional concepts used include: picture of the database schema, picture of the
developing query, selectable objects, direct manipulation, piecemeal query specification,
display of intermediate results and pre-defined joins. The resulting QMF is simple to use

and enables the flexible expression of the simple as well as the complex database query.

Accesion For \
NTIS CRA&I v
]
-

DTIC TAB
Uaanrouiced
Justification

——

By
Dist:ibution]
e e e]
Avaiiztity Cooes
.. N N R VN
Dist Spr cial

Al

- ———— e+ ot = b A e e A et s

TABLE OF CONTENTS

I. INTRODUCTION. c v oot teteecnensocooocoaancnsnnssanansans 1
A. BACKGROUND. . civveeenooesonnnsnacnos Ceeerseraconas 1
B. BRIEF DESCRIPTION OF OUR APPROACH......co0eevenan 2
C. SCOPE OF THESIS.ttt eetreenecnenanenonncnns 3
D. CHAPTER LAYOUT vttt enneennennsnnanosannsonan 5
II. PREVIOUS AND RELATED WORK............. e esseeceaneeen 6
A. USER INTERFACE DESIGN......c.cteieencenasonnannns 6
B. GRAPHICAL USER INTERFACES.....ccceerneecccenancns 8
C. GRAPHICAL USER INTERFACES FOR DATABASES.......... 9
ITI. RESEARCH ISSUES AND FINDINGS.....ocoece.. s et eaes 21

A. WHAT ARE THE CRITERIA FOR DETERMINING A GOOD
DBMS GRAPHICAL USER INTERFACE ?2.....cecevaccssns 22

1. Criterion 1 : The Proposed DBMS
Graphical User Interface (GUI) Must
Constitute an Improvement Over Existing
DBMS Interfaces.......ciceieeennceennennen 22

2. Criterion 2 : The Proposed DBMS GUI
Must Include the Integration of
Applicable GUI Concepts and
Capabilities.............. cee e reetceaenena 23

3. Criterion 3 : The proposed DBMS GUI
Must Support a Real-World to Database
Mapping Mechanism..........00u.... e cteeaa 25

4. Criterion 4 : The proposed DBMS GUI
Must Support Flexible Expression of
QUBLY . v civereenocssseasceenaononcsesoncnncnnan 26

5. Criterion 5 : The proposed DBMS GUI

Must Comply With Known User Interface
Principles.....ccceeieneencennes cetescnenae .27

iv

WHAT
MUST
USER

Criterion 6 : The Proposed DBMS GUI
Must be Extensible..... ..ottt nnnans 27

ARE THE COMPONENTS OR FEATURES WHICH
BE INCLUDED IN A GOOD DBMS GRAPHICAL
INTERFACE 2. ..t tiereeentonecescanosconensas 28

Provide a Simple Real World-to-Database
MaPPiNg. .vieeereeeeeeenesencessaneancannas 30

a. Feature 1 : Provide a Pictorial
View of the Database Schema........... 30

b. Feature 2 : Ensure the User can
Easily Understand the Basic
Building Blocks of his Database....... 31

c. Feature 3 : Allow Visibility of
Metadata......... Cesesececccnteereaneen 33

d. Feature 4 : Allow Levels of
Abstraction......... Ceeseeencneesennn .35

Maximize the Intelligent Use of
Graphical Objects....civvveennen Cecerecaans 39

e. Feature 5 : Use of Selectable
ObjectS..ieeensnennnnes Ceeeneas ceeeenn 39

f. Feature 6 : Use of Automatic
Object Placement.......cieeneeencencs .40

g. Feature 7 : Allow Easy User
Selection and Arrangement of
ObjectsS..cveeererenenresncnsnnancnencnan 41

h. Feature 8 : Use of Clearly
Differentiable Objects....cvevreennnn 42

Allow Stepwise Refinement of the Query
During Formulation......ceveeereeacencccens 43

i. Feature 9 : Manipulation of Data
Flow to Achieve Objective....... ces++.45

j. Feature 10 : Use of Simple
Operations....ccceeveeeceans S 1)

k. Feature 11 : Piecemeal Design and
Construction of Query....... ceeeenees.db

Iv.

1. Feature 12 : Saving and Retrieval
of Previously Defined and Commonly
Used Joins.......ccvvu.. Cececteeeasaeas 47

m. Feature 13 : Immediate and
Meaningful Feedback......eiteveneennnn 48

4, Minimize the Effort Required of the
L8 =7 = ol 49

n. Feature 14 : Ensure the Earliest
Detection Of ErrorS. ...v.eeeeeeesceness 50

0. Feature 15 : Automatically Make
Necessary Tools and Information

Available. ...ttt iiietierteeeenecneanes 51
P. Feature 16 : Stream-line
Repetitive Actions............... «e...53
q. Feature 17 : Use a Default Result
Format.....ioitiiiiencerecnnonnenacsones 54
C. APPLICABILITY TO MULTIMEDIA DATABASE
SYSTEMS........ e e ecasssecssasetsseeccnsnaenenns 55
DESCRIPTION OF GRAPHICAL QUERY MANAGEMENT
FACILITY....... e s e s s areera st sasssesscessesenseannan s 57
A. MAJOR FUNCTIONAL PARTS OF INTERFACE.....coc0eu.. 57
B. SIMPLE QUERY WITH INDIRECT USE OF MULTIMEDIA
DAL A . it it tneeeenennsnsssnasscsascnsscsosaannnness 59
C. SIMPLE QUERY WITH DIRECT USE OF MULTIMEDIA
DATA. ...t eieeecnnncees e cereeresesasseresencsncnna 65
D. COMPLEX QUERY....ccveceecconcnnns cecctsaseeasans 68
E. AGGREGATE FUNCTIONS...... sesssassaesaresseneneon 72
CONCLUSIONS...cceeven cecesssetteseacnsasanasananenne 114
A. APPLICABILITY OF APPROACH. ... v cvvereononnn ee.-.114

B. STRENGTHS AND LIMITATIONS OF APPROACH..........115

1. Strengths of Approach............. cesecens 115

2. Limitations of Approach........ceveveuuen. 120

cC. FUTURE WORK.....ooittetnntsoennoeencncecanncnnns 122
vi

1. Implementation of the Proposed Query
Management Facility......coiivneinnnnnnnns 122

2. Design and Implementation of Remaining
User Interface Components for Database....123

3. Continuing Incorporation of Evolving

TeCchnNOlogY . vevetsitnernceecannnanessoncnns 124

LIST OF REFERENCES....... s e e s et eatcane st cees et e oo eon 125

INITIAL DISTRIBUTION LIST ...t et eeencetsonnaeanscnccanas 129
vii

I. INTRODUCTION

This thesis is prepared in conjunction with the work of
other researchers working within the area of multimedia
database at the Computer Science Department of the Naval
Postgraduate School. This thesis focuses on a subset of the
issues one must consider when designing a graphical user
interface for a multimedia database. The specific topic of
interest is the query specification facility of such an

interface.

A. BACKGROUND

There are some very good graphical user interfaces
currently implemented to provide the quality of man-machine
interfaces necessary to permit an optimization of the man-
machine team. User interfaces of this quality do not exist for
databases.

User interfaces for databases have received only a small
amount of attention from the research community (ZODNIK90),
(ENDU89) . Many of the published papers present valuable ideas
which are yet to appear anywhere but in a prototype form
(ENDU89) . There is a technology gap between the types of
things database users are limited to as compared with the

capabilities present in user interfaces for other areas.

Progress has been made in many areas. In the area of
software progress has been made in graphics software,
windowing software, networking software, operating systems and
many others. In hardware progress has been made in screen
capabilities, processing speeds, direct storage capabilities,
hardware architectures and others. From the study of human
factors engineering have come advances in user interface
theory, guidelines and principles. The importance of database
user interfaces must take advantage of all the technology and
theory available and create the best user interface possible.
The full impact of database technology can only be realized

with the successful progress of user interface.

B. BRIEF DESCRIPTION OF OUR APPROACH

All database management systems have a user interface of
some sort. The goal of this thesis is to come up with a user
interface which is better, one which will also be applicable
to a multimedia database. In order to do this the latest
hardware and software technology is considered. Additionally
sound user interface principles as well as a careful and
creative consideration of user-to-database interaction within
a multimedia environment.

The user interface approach taken in this thesis uses
graphical direct manipulation as a means of facilitating the
user-to-database interactions. The proposed user interface

uses a unique approach to permit the user to express his

queries. The approach uses low-level data manipulation
operations and the concept of data-flow while keeping the user
close to the basic concepts of the relational data model. The
approach integrates these ideas with each other. Additionally
the .roposed user interface integrates other user interface
concepts and query specification ideas which have been found

in related literature.

C. SCOPE OF THESIS

This thesis is concerned with the query specification
process. In order to understand the scope of this thesis the
reader must visualize a conceptual division of database
management related functions. The functions of concern to us

are :

1. schema definition/exploration
2. query specification
3. output display

Each of these functions is involved in a direct way with the
query specification process. Terms have been coined to
represent the portions of the user interface responsible for
each of these functional areas. The schema
definition/exploration is handled by a module called the
Schema Management Facility (SMF). The query specification is
handled by a module called the Query Management Facility

(QMF) . The output display is handled by a module called the

Report Management Fawility (RMF). These names were chosen for
their descriptive value as well as their consistency.

As will become evident all three of these facilities are
discussed and at least partially described in this thesis.
This is not surprising considering the integral part they play
in query specification. It should be remembered that the focus
of this thesis is on query specification and hence only the
QMF will be described in detail. Non—-query related aspects of
the SMF and the RMF will not be described.

The underlying assumption of the user interface presented
in this thesis is that the database is one based on the
relational data model. While many of the research findings
presented in Chap+er 3 are valid in the more general case, the
proposed user interface presented in Chapter 4 is not. The
decision to restrict the scope in this way is based on the
usefulness and widespread acceptance of the relational data
model. This decision is also effected by the fact that the
prototype multimedia database at the core of the research
teams efforts is based on the relational data model.

While this thesis is related to user interface research
which 1is ultimately targeted ror a prototype multimedia
database, it has a broader applicability to a data base user
interface for any relational database system. The multimedia
aspects of the interface are for the most part found in the
Report Management Facility which as stated above is not the

central aim of this thesis.

D. CHAPTER LAYOUT

Chapter 2 discusses research conducted in the area of
graphical user interfaces for databases as well as in related
areas. Chapter 3 presents the research questions considered by
this thesis. The chapter then follows with a description of
the findings and conclusions resulting from studying and
researching these questions. Chapter 4 presents a description
of a proposed graphical user interface for a multimedia
database. This proposed interface is based on the findings
presented in chapter 3. Chapter 5 describes briefly describes
future work required in the area of graphical user interfaces
for multimedia databases. Chapter 6 provides a summary and
conclusions reached about the proposed interface. This chapter

discusses the strengths and limitations of the approach.

II. PREVIOUS AND RELATED WORK

This chapter groups previous and related works into three
broad areas. The first section includes those works which
relate to the broad area of user interface design for
automated information systems. The second group presents those
works which relate to the more specialized area of graphical
user interfaces. The third and most interesting area includes
those works which relate to graphical user interfaces for

databases.

A. USER INTERFACE DESIGN

This section presents a couple of resources which are
related to the design and development of any automated user
interface. Interactive computer systems have been in use for
some time. This implies an abundance of experience, research
and literature. Much of the available literature is relevant
to and of value when considering the design of a user
interface such as that presented in this thesis.

Sidney Smith and Jane Mosier (SMITH86) have developed a
collection of nine-hundred and forty-four guidelines for
designing user interface software. This collection of
guidelines includes general guidelines as well as very
detalled guidelines. This work is mentioned just to provide

support to the assertion that there are many guidelines and

principles published which one can consider when designing
user interface software. With reference material such as this
available there is no need of working design decisions in a
vacuum. It is easy to obtain ideas and opinions when designing
an interface.

Ben Schneiderman points out that prior to designing a
system one should consider two import areas. One consideration
is the nature of the user. The designer should acquire a good
feel for the eventual user of the system (i.e. target
audience). A second important consideration is the nature of
the system and its tasks for which the interface is being
built. (SHNEIDERMANS87)

Schneiderman offers a set of eight principles which apply
to user interface design. These principles provide a good
checklist for ensuring that a design has at least included
consideration of issues commonly applicable to |user
interfaces. These principles, presented in Table 1, are
general in nature but as a whole they capture most of what
different authors have said in this area. These eight
principles will be considered further after the proposed DBMS
user interface is presented. They will be used during part of

the post-evaluation of the proposed interface.

TABLE 1 - USER INTERFACE PRINCIPLES (SHNEIDERMANS87)

1. Strive for Consistency.

2. Enable frequent users to use shortcuts.
3. Offer informative feedback.

Design dialogues to yield closure.
Offer simple error handling.

Permit easy reversal of actions.
Support Internal Locus of Control.
Reduce short-term memory load.

oo ~JoyUn b
* e e e

B. GRAPHICAL USER INTERFACES

Dan Heller discusses issues related to the use of
currently available graphical user interface tools. He speaks
about the high level tools used to develop user interfaces in
today’s windowing environments. Heller claims that all of the
GUI tools are based on some already accepted fundamental user
interface principles (HELLER90a). This statement suggests that
by using standard GUI tools, compliance with fundamental user
interface principles is maintained. The built~in enforcement
of sound user interface principles in this case is a
beneficial side-effect of using a GUI. Heller (HELLER90a)
presents a list of graphical user interface design goals as
presented in Table 2. This list of goals was specifically
developed in relation to GUI’s which tailors to the types of
concerns relevant to the GUI developed within this thesis. The
goals listed in the table will be used for the design and

evaluation of the proposed DBMS user interface.

TABLE 2 - IMPORTANT GOALS IN GUI DESIGN (HELLER90a)
1. Intuitive
2. Consistent
3. Conducive to Frequent Use

4. Visual Cues
5. PFlexible

C. GRAPHICAL USER INTERFACES FOR DATABASES

With a graphical user interface, a data model must be
presented to the user. This data model is necessary to
facilitate his interaction with and understanding of his
database. Different data models and ideas about how to use
them for browsing, querying and working with a database have
been studied. A consistent theme presented is the clarity with
which the model must allow the user to understand his
database. Different models have been proposed. The entity-
relationship (E-R) model has been a central part of several
proposals (ELMASRIS8S), (PAOLO83), (ROGERS88) , (WONG82),
(ZHANG83) . This choice of the entity-relationship model is a
good choice and hence has also been adopted by the user
interface presented herein. These related works will each be
discussed below. Elmasri and Larson (ELMASRI85) present a
sequential query specification process whereby the user begins
his query by first specifying the entities and relationships
of interest. This is facilitated by a pictorial use of the E/R
model. Next the user causes the entities to be automatically
arranged into a hierarchy by manually selecting one of the

entities as the root entity. This assignment automatically

implies the structure of the remaining hierarchy since the
relationships of the initial E/R diagram are assumed to hold.
Next the user places selection conditions on first the root
entity and then the remaining entities. Based on where the
user is in the query, his conditions will have different and
difficult to foresee results. To overcome this the system
interprets the user specified condition and comes back with a
display of its own interpretation. The user then states
whether the system interpretation is what he intended with a
Yes or No. A No response from the user causes iteration of the
process. This specifying of conditions on entities is in
effect causing a selection on each relation. The user next
selects the desired attributes from each entity. These last
two steps can be reversed or interleaved. (ELMASRIS8S)
Selecting entities and relationships from an E-R diagram
is similar to our approach. Also the notion of pictorially
seeing the structure of the query by a graphical
representation of entities, or in our case, relations. The
remainder of the process described by Elmasri and Larson is
not considered useful (ELMASRI85). It should not be expected
that the user can define all the entities and relations at the
beginning of a complex query. This places an unacceptable
burden on the user. Additionally the user should not be forced
to conceptualize his query in the form of a hierarchy with his
identification of the root. This certainly is not intuitive.

In contrast to this our proposal uses the idea of data flow

10

from the leaves to the root of an upside~down binary tree. The
leaves or initial relations can be specified at any point
during the query. The root is the final relation which
represents the result of the query. Our approach allows the
user to think as he goes and to change his mind on the fly.

When specifying conditions in a complex query the user
should not be expected to use a syawem interpretation of his
condition for an iterative dialogue. In a sense this is like
having the user throw darts until he gets a bullseye. This
does not put the user at the locus of control. In contrast our
proposal provides meaningful feedback to the user at each
application of an operation. There is no complicated data
structure for the user to consider before applying an
operation. There is simply one or two relations which are
input to an operation. There is only one relation which is an
output to an operation. The user may then immediately see
metadata or actual data represented by this relation. If the
operation is not what he intended he can go back and retry
this single operation. There is no guessing of what the system
is doing. The system responds to each of the users actions and
immediately supplies the user with helpful feedback.

Rogers and Cattell (ROGERS88) present an implementation of
~ a database user interface which facilitates schema design and
database browsing. The facility called "Schemadesign" permits
the user to define a database while pictorially providing a

bit-mapped graphic display of the developing E-~R semantic

11

model. This definition process encourages data normalization,
appropriate definition of keys and declaration of applicable
integrity constraints. The backend is a relational database
which assumes responsibility for supporting the maintenance of
declared integrity constraints. A second facility called
"Databrowse" is a window-based program which allows the user
to browse the schema and edit values in the database. The
browsing and displaying of data is centralized around the
concept of "entity"™. This means the user is at times removed
one layer above the concept of a "relation". The display of a
record for an entity may contain data from many relations with
many records from some of the relations. This display of many
records for viewing one entity results from the nature of
multi-valued attributes of a relation. Databrowse uses a
degwult form to display data about entities. The display and
its underlying database support the handling of certain types
of unformatted data. The system uses a binary data type for
storage of unformatted data within the database as well as
having a means to store pointers to files residing external to
the core back-end database. The level of support provided for
unformatted data is not described in a detailed fashion.
(ROGERS88)

The Schemadesign program described by Rogers and Cattell
is considered partially useful as a basis for integration into
the prototype interface proposed herein. This is based on

initial considerations and is not final at this point. As

12

stated previously the focus of this thesis is to present a
Query Management Facility (QMF). The interface presented in
this thesis does not include a well defined description for a
Schema Management Facility (SMF). It only presents those
considerations which must be considered. Key amongst these are
that the SMF must be based on the E-R model, capable of
supporting the relational data model and be graphical as well
as to permit graphical manipulation. Additionally the SMF must
appear functionally consistent and interactively similar with
the QMF (e.g., the user can not be expected to learn two
significantly different systems for working with one
database). On the surface it appears that the.Schemadesign
program described by Rogers and Cattell meets these
guidelines. The drawback in the Schemadesign program is its
focus on entities vice relations. This adds an unnecessary
level of confusion to a user of a relational database. During
a query the user must focus on relations and be aware of all
the relations which might be a part of his query. This
includes relations representing multi-valued attributes of
entities. The QMF proposed in this thesis has the user working
with such relations the same as any other relations. This is
for the reasons of consistency and simplicity. The relation is
the common denominator for all data used in queries. The SMF
must support this same approach. (ROGERS88)

The Databrowse program mentioned in the work by Rogers and

Cattell is useful in casual browsing of the database. It does

13

not appear to support the expressiveness needed by a query
facility. It is not suitable as the query tool sought in this
thesis. The authors do mention intentions to develop a more
sophisticated query tool in the future which will be designed
to use graphics. The design decision made in the design of
Databrowse to use default forms and to work in a windowing
environment are consistent with the decisions presented in
this thesis. Databrowse works on the concept of the entity
vice the concept of relation. This is in contrast to our
proposal as explained in the paragraph above. (ROGERS88)

Wong and Kuo (WONG82) present a user interface called
GUIDE (i.e., Graphical User 1Interface for Database
Exploration). GUIDE is a graphical user interface for a
database which 1is based on a network of entity and
relationship types. The E-R model is pictorially displayed for
the user and is an integral part of the query expression
process. Queries are expressed as traversal paths on the E-R
network.

GUIDE contains several very important features which are
included in the user interface proposed in this thesis. GUIDE
permits the wuser to formulate his query in a piecemeal
fashion. As the user is piecing his query together he can look
at intermediate results. These features encourage database
exploration and constitute meaningful feedback. GUIDE
contains a mechanism to allow the user to define varying

levels of detail in the presentation of the schema. It does

14

this by allowing the user to set the level of detail (e.g., on
a scale from one to five) and also to set the radius within
which objects are to be displayed. This radius is based on the
number of links traversed from a central object which is user
determined. GUIDE also allows the user to toggle off the
display of specific unneeded objects. Additionally GUIDE
enables the user to acquire detailed information or
explanation on a user specified object. This information
includes the display of available meta-data. These features
amount to allowing the user to deal with the desired level of
abstraction and to hide information which is not essential to
his user objectives. These features are all considered an
important part of a graphical user interface for a database.

There are a number of things which set the interface
proposed in this thesis apart from GUIDE. One difference stems
from GUIDE’s presentation of the database schema and display
of the developing query both in the same picture. This over-
tasks the differentiable symbology and overworks the screen
area responsible for conveying information to the user.
Colorization of objects is used to show the user the relevant
parts (i.e., entities and relationships) of his developing
query. It appears that as pieces of a complex query begin to
overlap, the visibility of 1local queries as well as the
overall query are lost. Additionally as pieces of a query are
linked together, GUIDE appears to automatically build these

links. This takes the necessary feeling of control away from

15

the user. From the description of GUIDE, there is no apparent
means to resolve decisions when more than one 1linking
alternative exists.

GUIDE buffers the user from ideas tied solely to the
relational data model. The authors claim that concepts such as
the relational join cause the user too much memorization and
effort in explicitly specifying implied relationships.

In contrast to GUIDE, the interface proposed in this
thesis uses separate pictures to display the schema and the
developing query. At all times during the query formulation it
is made clear to the user where he is at and how the pieces of
the query fit and interact together. To a large extent this is
achieved through the use of data flow, simple operations, and
consistent meaning of displayed objects. The user is always
made to feel in control as everything occurring during the
query formulation is caused by him.

The proposed interface recognizes the additional effort
and memorization which may result when requiring the user to
use low level relational operations. This factor is mitigated
by allowing the user to use the E-R diagram to specify implied
relationships. The use of pre-defined joins and previously
defined queries is believed to more than offset the cost
associated with low-level operations. Additionally, low-level
operations permit the wuser to acquire an increased

understanding and appreciation for the capabilities of his

16

database. This 1is invaluable when confronted with the
formulation of a complex query.

Zhang and Mendelson (ZHANG83) propose a graphics based
entity-relationship query system. In their proposal the user
is presented with a picture of a database schema on a graphics
screen. Queries are formulated by pointing at nodes to be
included in the query, using a mouse. Conditions on the nodes
are specified by filling in forms. These forms are QBE-like
forms completed by typing in expressions constructed of
constants and variables. Three operations which can be
performed on relations, (i.e. union, intersection and
difference) are presented as menu options. These operations
are used to combine the results of several elementary queries.
They claim navigation is simplified in two ways, one being the
display of the diagram on the screen and the other is the use
of default connection paths. A default connection path is a
minimal connected sub-graph connecting the specified nodes.
These default connection paths are computed by the system
based on the notion of maximal objects (MAIER83). At any time
during the query formulation the user may request execution of
the query as specified and continue refining the query after
viewing the results.

Zhang and Mendelson present several very key ideas. One of
these is the notion of the incremental query formulation. This
allows the user to perform the query in a piecemeal fashion.

One restriction which appears to exist in their proposal is

17

the arbitrary combination of the relational operations. It
appears that selections, projections and joins constitute an
elementary query. Only after two or more elementary queries
are formed can the union, intersection, or difference
operations be applied. Once these operations are performed it
appears as though no further query refinement is permitted.
Our proposal overcomes this problem by maintaining that all
intermediate results are relations. By doing this it is
ensured that all operations can be performed in any order and
at any 1level of complexity. This is of course under the
condition that the user chosen operation makes sense on the
relation or relations chosen as operands. (ZHANG83)

Another problem present in the proposal by Zhang and
Mendelson is the non-uniformity in presentation to the user.
Some operations may only be applied through QBE-like forms,
while other operations may only be applied through menu
selection. Queries by their nature may be inherently complex.
As the user formulates the query through the user interface of
a DBMS, a simple means of expressing the complex query must be
provided. The user must be able to consistently apply database
operations on data. (ZHANG83) Our proposal ensures this is
satisfied. All operations are applied in the same manner. The
may be applied at any time and conceptually result in a
consistent action (i.e. modification of the data flow). More

will be said about this in the next chapter.

18

A well known database user interface is Query By Example
which is also known as QBE (2LOOF75). With QBE the user is
presented with a tabular view of the database. The user begins
a query by selecting a subset of all the tables in the
database. The expressions needed to select the desired rows of
data and attributes to be disawayed are then specified with
respect to each table. The tabular format is simple to
understand but fails to communicate some of the semantics of
the data. When data from more than one table is needed, the
user must remember what attributes from what tables result in
the desired joins. There is no notion of default joins as
modeled in the E/R model. There is alsoc no means for
identifying predefined joins. Overall the QBE approach is not
considered helpful in our quest for a good database user
interface.

The use of forms for user interfaces is not new
(WARTIK88) . An interesting forms type interface for databases
is called FOSTER (MIYAO87). This is a forms-oriented user
interface using forms which are very close in format to those
used in QBE. With this interface the person performing a query
uses graphic icons, directed edges and forms to create
application programs. These application programs can then be
used to query the database. The problem with this approach is
complexity in defining forms and integrating them into the
iconic language. The entire approach requires a lot of work

and learning by the user. It appears that the user would have

19

to spend time to become quite familiar with a users manual in
order to figure out how to begin. In contrast, the user
interface presented in this thesis is quite simple. With a
small amount of learning the novice user can use the interface
to perform difficult queries in a simple manner. Information
and tools (e.g., menus) which are needed by the user are
automatically made available to the user at the appropriate
time. Guidance is provided to the user in the form of
suggested actions. As the user is performing actions a
dialogue takes place guiding the user through his work. If he
for example selects a binary operation, the interface will
ensure he chooses two appropriate operands.

Other less known models such as the Graph-Oriented Object
Database Model (GOOD) (GYSSENS90), User Data Model (MIYAOS86),
and Semantic Data Model (SDM) (GOLDMAN85) have also been
proposed. A model such as GOOD does not lend itself to
concepts of the relational model, but is more suited to use
with the object-oriented data model. The User Data Model is
not considered helpful in presenting the user a clear view of
the schema. The SDM does not lend itself to the low-level
query specification approach proposed in this thesis. These
models are mentioned to highlight the fact that other models
have been looked at but the E-R model seems to be the best
available semantic data model for our purposes while working

within the realm of a relational database.

20

I1II. RESEARCH ISSUES AND FINDINGS

This thesis addresses two basic research questions. In
this chapter the issues and findings related to these two
research questions are presented. The two questions are :

1. What are the criteria for determining a good DBMS
graphical user interface ?

2. What are the components or features which must be
included in a good DBMS graphical user interface ?

The first question relates to the establishing of a
benchmark or yardstick by which to gauge the relative quality
of a DBMS user interface. Neither a benchmark nor a set of
standards by which to gauge a DBMS user interface exists. This
question addresses the things which one might consider as part
of such a benchmark. It is an important question since if we
do not have a set of such criteria thén we have no way of
evaluating and thereby progressing forward in this endeavor.
We are in a broad sense laying the groundwork for future
advancements in the area of DBMS user interfaces. This
groundwork is equally applicable to the more specialized area
of multimedia database systems.

The second question attempts to capture in a detailed way
the types of features which must be included in the design and
development of a graphical DBMS user interface. As with the

criteria mentioned above, these features include those which

21

are necessary for a user interface for a multimedia database.
As each of the features are described, a discussion and one or
more examples from the proposed DBMS GUI are presented.

The material corresponding to each of these two questions

is presented below, under the respective sub-heading.

A. WHAT ARE THE CRITERIA FOR DETERMINING A GOOD DBMS
GRAPHICAL USER INTERFACE ?

1. Criterion 1 : The Proposed DBMS Graphical User
Interface (GUI) Must Constitute an Improvement Over Existing
DEMS Interfaces

This is not to say that current DBMS user interfaces
are not "good", in the general sense of good. Current database
user interfaces do work. The assertion made by this thesis is
there exists a graphical user interface for databases which is
better than those currently implemented. This is what we
search for. Only when such an improvement is found, is it
considered good. To know when this objective has been reached
there must be a comparison against existing database user
interfaces.

There are a number of different methods currently
implemented or proposed in literature to query a database.
These include linear query languages such as SQL and two-
dimensional methods such as QBE. One means of evaluating a new
proposal is to compare it against these other methods which

are similar in function and ask, "Is this an improvement 2" 1f

22

the proposed query interface is not an improvement then for
our purposes we can not classify it as a good interface. The
bottom 1line is we are 1looking for something which is
measurably better.

What does "measurably better"™ mean ? The problem we
encounter is there is not a standard way to measure such a
qualitative thing as a ’'better interface’ (WU89). This is in
part responsible for the lack of attention given this area by
computer scientists. Enhanced productivity, enjoyment by the
user, amount of learning required and number of mistakes made
by the user are some of the factors which should be considered
in this situation. This is a criterion which is best studied
within the domain of human factors engineers. For our purposes
we will not consider the scientific techniques employed by
such engineers. We will simply rely on persuasive argument
based on subjective intuition to claim we have an interface
which is an improvement. Still, the idea is valid that there
must exist a reasonable assurance that a new proposal is in
some sense an improvement in order to consider it a good DBMS
graphical user interface.

2. Criterion 2 : The Proposed DBEMS GUI Must Include the
Integration of Applicable GUI Concepts and Capabilities

Another important criterion for evaluating a DBMS GUI
is the degree to which it integrates the latest GUI concepts
and capabilities. A good DBMS GUI must include integration of

those graphical user interface capabilities which through

23

their integration, make it a better interface. GUI concepts
should not be included just for the sake of inclusion. Each
concept should be carefully considered. It should be
considered in conjunction with other user interface tools and
concepts. The ultimate goal is to achieve the best overall
interface through a skillful combination of existing GUI
tools. Consistency for the user is an important goal to keep
in mind when integrating various tools (WARTIK86). It may be
the case that certain concepts and capabilities should not be
used. This case should occur only through a conscious design
decision. (ANDERSON86)

Two examples of such GUI capabilities are those
involving windowing tools and those involving Graphical Direct
Manipulation. Windowing tools includes the software which
enables such things as the creation, movement and re-sizing of
multiple windows on a terminal screen. Numerous ways of
applying windowing capabilities have been either implemented
or proposed. Graphical direct manipulation refers to the
capability to manipulate and use visual objects through the
use of a pointing device such as a mouse (KUNT289, SHUS89).
This includes operations such as moving, re-sizing and
pointing at objects for selection purposes. A wealth of
related concepts as well as different ideas have either
already been implemented or have been proposed in research

(KUNTZ89, BRYCE86). All of the applicable concepts must be

24

considered to ensure that an interface does not exclude
something which would make it better.
3. Criterion 3 : The proposed DBMS GUI Must Support A
Real-World to Database Mapping Mechanism
This criterion refers to the effectiveness with which
a user interface allows the user to understand what is in his
database. The user presumably knows about the real world or at
least about that portion which is modeled in the database. The
user must clearly understand what is and what is not modeled
in his database. The user interface must not assume the user
knows the detailed contents of the database (ELMASRIS8S5, pg
237) . To make good use of the data the user has got to have an
appreciation for what the database does and does not contain
as well as the types of queries that it can and cannot
support. A powerful data model which captures all sorts of
meaningful information does not do any good if the user cannot
request and subsequently extract the useful information. The
user interface is what lies between the user and the data. The
user interface must allow the user to see into his database in
a way which is intuitive while at the same time map this data
to the users perception of his real-world. Another way to say
this is that the user interface must include a good mapping
mechanism which allows the user to understand the relationship

between the database and the real-world (WONG82).

25

4. Criterion 4 : The proposed DBMS GUI Must Support
Flexible Expression of Query

The user of a DBMS may require a database to respond

to an extremely complex query. To be complete the database and

it’s user interface must support the expression of and

performance of such a query (ELMASRIS8S, Pg 238). The

expressiveness of a query language is difficult to gauge.

There is the notion of relational completeness. This refers to

the expressive power of a query language and represents the
minimum capability of any reasonable query language for the
relational data model (ULLMAN82, CODD72). A database based on
the relational data model must at a minimum be relationally
complete. There are a class of queries known as recursive
queries. A DBMS user interface must support recursive queries.
There are also a number of aggregate functions which provide
a convenient tool for the database user (e.g., count, sum,
avg, min, max). A good user interface must include the
provision of the basic aggregate functions.

There exists a deeper notion of what a database query
expression capability might support. Consider the case of a
single complex query. Assume three different users have the
need for the results of this query. There are a number of ways
to think about this query. It is reasonable to expect
different users to think about what is in essence the same
query, in different ways (ELMASRI85,pg 237). In this example,
assume that each user thinks about the query differently. A

26

database query specification facility should allow a user to
express a query in a way which he thinks about the query. The
user should not have to re-think his query in order to express
it in a way which the system will understand. In the example,
each of the three users should be able to express the query in
a way which is intuitive to him. This implies that the user
interface should support whatever formulation of the query the
user might naturally happen to express. This is considered as
flexible support of query expressions. A good DBMS user
interface must support flexible expression of queries.

5. Criterion 5 : The proposed DBMS GUI Must Comply With
Known User Interface Principles

User interfaces in general sense have been around for

a long time. Over this period a substantial amount of research
and number of studies has gone into this area. As a result a
number of guidelines and principles have been proposed. Some
of these guidelines and principles are relevant to the user
interface we consider in this thesis. A summary of some of the
more important principles and guidelines are mentioned in the
Section A of Chapter 2. A good DBMS GUI must comply with these
basic principles and guidelines.

6. Criterion 6 : The Proposed DBMS GUI Must be
Extensible

What constitutes a good GUI today may not constitute

a good GUI tomorrow. Things continually change and as they do,

new user interface and database concepts continue to be

27

discovered. In addition to this new hardware capabilities, and
new software capabilities continue to evolve. As these changes
occur a good GUI will grow and change with them. For this
reason, a DBMS GUI must be designed and built to grow and

change. This flexibility can only be ensured through the use

of a modular design. A user interface must be designed into
functional modules with well-defined interfaces amongst the
modules. There must also be well-defined interfaces between
the user interface modules and the underlying database. Not
only will this enhance software supportability but it will
also provide the extensibility required.

It is clear that the user is not directly aware of the
qualities of a user interface which make it extensible. This
criterion is one which supports those aspects of a user
interface of concern to those in the business of designing,
implementing and maintaining user interfaces. The implication
here is a good user interface lends itself by way of its

design to future evolution and maintenance.

B. WHAT ARE THE COMPONENTS OR FREATURES WHICH MUST BE INCLUDED
IN A GOOD DBMS GRAPHICAL USER INTERFACE ?

As previously stated the focus of this thesis is on the
user interface aspects of database query formulation. Chapter
One mentions three related functional facilities of the DBMS
user interface. The Query Management Facility is the key

facility being considered. The other two functional facilities

28

which play a key but supplemental role in query specification
are the Schema Management Facility and the Report Management
Facility. This structural overview is repeated here to aid the
reader in understanding the framework in which the following
material is presented.

This section of the chapter describes the necessary
components of a good DBMS graphical user interface. The
required components are presented as a detailed 1list of
features which should be a part of a good interface. This
detailed list is presented below. The features have been
arbitrarily placed into one of four groups based on the
primary benefit to be derived the feature. These four groups

are :

1. Provide a Simple Real World-to-Database Mapping
2. Maximize the Intelligent Use of Graphical Objects

3. Allow Stepwise Refinement of the Query During
Formulation

4. Minimize the Effort Required of the User

This does not mean that clean lines exist with which to
differentiate these features. It only means that this is the
arbitrary grouping that I have chosen to use. There is
significant overlap in benefit to be derived from many of the
features.

As each feature is presented below, one or more

implementation examples will be discussed. This example or

29

examples will relate each feature with one or more of three
major functional facilities of a DBMS user interface which
were mentioned above (i.e. , Query Management Facility, Schema
Management Facility, Report Management Facility).
1. Provide a Simple Real World-to-Database Mapping

This group includes features which enable the user to
easily understand his database. The assertion which belies the
entire query specification approach presented in this thesis
is the user can and should be able to easily understand his
database. The ease and effectiveness of this understanding,
depends on how good the mechanism is which allows him to make
the intellectual mapping between the real world and the model
of the real world which is represented in his database.

a. JFeature 1 : Provide a Pictorial View of the
Database Schema

The Schema Management Facility (SMF) must provide
a pictorial view of the database. It is assumed here that the
database is structured in accordance with the relational data
model (RDM). In this case the choice is either to directly
present the user a picture of the database structure in a
format representative of the Relational Data Model or to use
an intermediate model which is closer to the users perception
of the world which he understands. The E-R model sufficiently
provides this intermediate model (WONGS82).
The idea is that the user must be able to visually

relate the concrete aspects of his world to the abstract

30

representation in his database. A picture allows the quick and
simple communication (i.e., mapping) of the database model for
the user. The choice of the E-R model here is arguable and
other models have been proposed (MIYA086, MIYAO87, GYSSENS90).
A comparative evaluation of the different models is not within
the scope of the thesis and will not be further discussed. The
interested reader might desire to consider the proposal
presented in this thesis with the assumption of some other
conceptual model. The point is a pictorial (i.e., visual)
representation is essential. As will become evident later,
this picture will facilitate important user activities such as
selection of desired objects within the database. In light of
the assumption we have made about the availability of a high-
resolution color screen, a pictorial means of communicating
the structural and semantic state of the data»ase is
unquestionably a necessary and supportable feature.
b. Feature 2 : Ensure the User can easily Understand
the Basic Building Blocks of his Database
In order for the user to achieve a high level of
comfort with and comprehension of his database, he must feel
comfortable with its basic building blocks. This is also
critical if he is to effectively comprehend a complete mapping
from the real world to his database. There must not be gaps or
empty holes where things mysteriously happen. As far as the
user is concerned, the relation or table is the lowest level

in his database. It is simply a grouping of related data about

31

a given entity or relationship. The table is organized into
rows and columns. The user can and should be made to feel
comfortable with this concept. The relation is the basic
building block of his database. It is also the initial, the
intermediate and the final result during the query
specification process. The user is always selecting and
performing operations on relations. There is a relation going
into each operation and a relation coming out of each
operation. It is the user’s goal to complete his query by
creating the table (i.e., relation) containing the desired
data.

The Query Management Facility (QMF) must allow the
user to select objects with which he may work and also to
manipulate objects through the application of wvarious
operations. Through graphical direct manipulation (GRDM) the
operations on objects are made easy for the user (KUNTZ89).
More will be said about GRDM later. The object with which the
user works during query formulation should be pictorial in
nature and the meaning must be something the user can easily
map to the real world. After all it is something about the
real world that the user is trying to get as a result of his
query. The pictorial objects used consistently through the QMF
are relations (i.e. tables). At every step throughout the
process of query formulation, the input as well as the result
of the query operation is a relation. These relations are

consistently displayed as rectangles. The user may think of

32

them as tables of data. In his mind he must manipulate these
tables of data to achieve his desired goal. The idea that a
table contains columns and rows of data is not a difficult
concept for the user (ULLMANB82,pg.168). A user can easily
handle the concept that his data is store in such tables. The
users ability to understand this idea has been argued in the
literature (MIYAO86) but the feeling here is that sufficient
credit must be given to even the naive user for being able to
deal with this simple concept.
¢c. PFPeature 3 : Allow Visibility of Metadata

An assertion made in this thesis is that the user
can and should understand his database. This requirement is
supported in part by Feature 1. Feature 1 provides a pictorial
display of the database schema. An additional means of
supporting the users understanding of the database is through
the availability of textual metadata. In simple terms metadata
is data about data. In this case, metadata includes such
information as the number of tuples in a relation. Other
metadata helpful to the user includes the number of attributes
in a relation and attribute type and size information. This
type of information helps provide the user with a warm feeling
about the correctness of what he is doing during the query
formulation process. It provides a sort of feedback about the
physical results of various operations performed by the user

during the query formulation process.

33

The value of metadata can best be explained
through an example. Consider for this example, the case of a
company database. A user generally has a good feel for the
nature of his data. This follows from the idea the database
reflects the users real-world. For example, assume that a
personnel clerk knows that he has in the vicinity of 200
people in Department A and about 2000 people in his entire
organization. He also knows that about 20% of the employees
are salaried employees. If he is querying his database for a
list of the people who have are "Salaried Employees in
Department A", then he has some feel for the numbers involved.
As he starts with the employee relation he may see metadata
indicating that there are 2138 rows in the relation. This
number makes sense to the clerk. After performing a selection
for those employees in Department A who are salaried he
observes that the resulting relation has 37 rows. Without much
thought the personnel clerk now has some intuitive feel for
the correctness of this portion of his query. (i.e., He
expected to see a resulting relation with somewhere between 20
and 50 rows). This is an example of the value which is
provided by meaningful feedback to the user.

An additional source of metadata is that data one
normally might find in the data dictionary. This 1is
information which is specified during the time of the database
schema definition. This data includes such things as sponsors

of certain attributes, or tables within the database. It may

34

also have comments explaining the practical meaning of
attributes or tables or the relationship between them. This
type of information is made available to the user in the
proposed interface.

Metadata is meaningful feedback. The proposed
interface allows the user to view this type of feedback as he
is working with the data. All of this supports the user
feeling comfortable about his perception of the correspondence
between the real world and his database.

d. Feature 4 : Allow Levels of Abstraction

Levels of abstraction is a key concept which must
be generously integrated into any good database user interface
(LEONG89) . We as humans have a very limited ability to deal
with large quantities of information. Even with this fact we
have found ways to accomplish enormously complex tasks. We do
this through our innate ability to abstract from that
information which is available, the information which is
relevant to what we are doing.

This concept is applied throughout the proposed
interface. Whenever possible, the user is permitted to see
more detail or less detail as he requires. This is intended to
assist him dealing with the simple and more importantly the
complex queries which he may be required to perform. Some
applications of the 1levels of abstraction feature are

mentioned below.

35

Through the Schema Management Facility (SMF) the
user is presented with an E-R diagram of the database schema.
In this diagram there is a means for the user to cause the
display or non-display of the attributes. The user may also
cause the inclusion or exclusion of the relationship
cardinalities in the diagram.

As mentioned in Feature 3, the user may view the
metadata as he is formulating his query. The interface permits
the user to turn the display of this data on and off. As the

user is formulating his query, he is creating and working with

its’ graphic representation. The user may view metadata as
cluttering up the picture. He may choose to see this detail
only when he is uncertain about the correctness of a
particular step. In this case, it is open to the user to
choose the desired level of abstraction.

This thesis assumes no specific 1level of
sophistication on the wunderlying relational database
management system. The user interface will however give the
user ready access to see whatever data the underlying database
maintains about the database. This includes the data which one
might find in the Data Dictionary of a large DBMS. Such things
as the owner of certain data, the 1long names of the
attributes, the aliases of the attributes, English
descriptions of the attributes and whatever else is available.
Similarly this claim applies to data maintained omn the

relations comprising the database. Clearly this could amount

36

to a lot of information and should be available to the user
only on an on-call basis vice as a default. In this case, too
much information could be as bad as not enough.

The database underlying the user interface might
be quite large and complex. It might be used by a number of
different users each with his own interest in the database.
Even a single user might have special parts of the database
which are commonly used and others which are seldom used. For
this reason and as well as to support the other benefits of
abstraction, the capability to create customized views of the
database is required. This means, that as the user is viewing
the database schema, he is seeing the portion of the database
of concern to him. This idea ripples into the other pop-up
windows and so forth which provide quick selection menus to
permit selection of desired table names, field names, etc.
These all automatically remain consistent with the users
customized view of the database schema. The assumption is that
the user has put those items of interest into his customized
view of the schema. Since this functionality is for the most
part a product of the Schema Management Facility (SMF) the
implementation specifics will not be laid out within this
thesis. Suffice it to say that its inclusion in a good SMF is
important and we assume its presence.

Another feature which must be included in both the
Schema Management Facility (SMF) and the Query Management

Facility (QMF) is the ability to zoom in and zoom out on the

37

picture currently being displayed (WONG82). This becomes
especially important when the user is working with a large
database schema and is incrementally formulating a large
multi-step query. The surface of the terminal screen is only
so large, therefore a zoom option must be used to allow the
user to step back and get the big picture yet still be able to
zoom in to work with the necessary 1level of detail to
accomplish his task.

Another example of the concept of levels of
abstraction is the <capability to permit implosion and
explosion of local queries and previously saved fragments to
show or hide levels of detail. As the user is incrementally
building a query he is creating building blocks which will be
a part of his final query. These are called local queries.
These same blocks might also be saved in their present form to
be used later in a different query. In a later query, these
would be called previously saved fragments. In its most
detailed form a previously saved fragment or a local query
might consist of a number of relations and edges between these
relations as well as graphic icons representing operations. To
facilitate ease of working with these building blocks, they
may be aggregated into a simple block representing the net
relation, which can then be exploded later if the user desires

to see or work with the inner detail.

38

2. Maximize the Intelligent Use of Graphical Objects

This thesis explores database user interfaces in light

of Graphical User Interfaces (GUI’s). This is different from
the traditional textual displays with textual menus where the
user either types a 1, 2, or 3 corresponding with his menu
choice or types in English text in response to system prompts.
A GUI makes use of graphical objects. A graphical object is
anything displayed on the terminal screen. This includes
different types of windows, scroll bars, buttons, pictures,
icons, etc. The simple display of text data is not a graphical
object. The use of the capabilities uniquely available with
GUI’s should be used to the maximum extent possible. One
should bear in mind, however, that the application of these
capabilities must be used in an intelligent manner. Some
features wh.ch apply this idea are presented below. (KUNTZ89)

@. Feature 5 : Use of Selectable Objects

While formulating a query the user must make a

number of choices. He must for example decide which relations
he wants to use in the query. He must also decide which
attributes he wishes to include during a selection of the
columns to include. This type of choice can be accomplished
through pointing and clicking on a textual description of the
~items on a menu presented in a pop up window. This is not a
bad approach and is an option the user has in the proposed
interface. There is another method which should be given to

the user of a DBMS GUI. As mentioned previously the use of a

39

picture of the schema is a necessary part of the interface. A
picture of the developing query is also available to the user.
These pictures are something which the interface encourages
the user to look at. The user just through using the interface
understands what is going on in the pictures. This provides
the key reason the pictures (ie graphical objects) must
provide a medium through which the user can communicate as he
develops the query. If the user wants the EMPLOYEE relation
then the user should only need to point to the EMPLOYEE object
and click. If the user wants to include the NAME and ADDRESS
attributes the user must only point to them and click. This
sort of capability to point at selectable objects must be part
of a good GUI. It provides significant savings in time and
effort over navigating and reading textual menus.
f. Feature 6 : Use of Autcmatic Object Placement

When graphical objects must be placed into a work
area they should be automatically placed wherever feasible.
This saves the user the time it would take to drag the item to
a position and drop it. A good example of this is included in
the proposed interface. While using the Query Management
Facility (QOMF), the user points to and selects one or more
objects (i.e. relations) to serve as operands. He then points
to and selects the desired operation. The visual result is the
creation of a rectangle representing the new resulting
relation. As a rule, the desirable placement of this new

object is generally below the operand and centered. If the

40

user were placing the item he would almost always place it in
accordance with this rule. For this reason the interface
should do it for him. This saves the user the work necessary
to do this placement. To allow for the exceptions when the
user desires a different placement of objects, the interface
provides an easy to use ability to move objects. This
capability is discussed as the next feature presented below.
g. Feature 7 : Allow Easy User Selection and Arrange-

ment of Objects
The interface must provide the user an easy means
to work with graphical objects. This is especially important
in an environment such as the proposed interface where so much
of the users attention is focused on the visual objects. Here
we are not talking about moving windows. As mentioned before
we presume that thls activity is within the domain of a
standard window manager. This feature refers to the objects
presented in the SMF and the QMF. The QMF is providing the
user with a current picture of the state of his query. This
picture should be arranged in a way amenable to the user. If
not, the user must be able to easily rearrange it. This is
possible by allowing the user to select an object, drag it and
the drop it in its new location. Another important point
involves selection of multiple objects. Presume that the user
desires to save a piece of a large query he is working on, The
piece involves twelve objects (i.e. rectangles) on the QMF

work surface. The user must only drag the pointer around these

41

objects and then release the button to select the group of
objects. This is much easier than pointing at and clicking on
twelve separate objects.
h. Feature 8 : Use of Clearly Differentiable Objects

A large amount of the user’s attention is drawn to
the pictorial view of the database via the SMF and to the
pictorial view of the developing query. For this reason it
must be very easy for the user to remain clear about what he
is looking at. Consider the picture of the query. The user is
looking at relations and at the flow of data between these
relations. It is easy for the user to realize that rectangles
mean relations and lines mean data flow. These are two very
different concepts represented using two very different
symbols.

There is a subtle difference amongst relations.
Some relations may represent actual relations in the database
(i.e. base relations) while others may be virtual relations in
the sense that they are derived via the application of
operations from base relations. This is a difference which
will rarely make a difference for the user but still the
difference is important. To represent this difference, the
base relations are presented in a different color from
virtual relations.

The user is frequently selecting abjects during
the process of formulating his query. When objects are
selected, this special status of the object must be clearly

42

discernable to the user. The user interface uses changes in
the intensity and texture of displayed objects to ensure this
occurs.

3. Allow Stepwise Refinement of the Query During
Formulation

Each time the user approaches the database, he has an
objective to accomplish. The DBMS user interface must make the
accomplishment of this objective as easy as possible. The
users objective falls into one of three categories. First it
may be to conduct a simple query. In this case the interface
must provide him a means to perform the query in a simple and
efficient way. The second objective the user may have when
approaching the database is the formulation of a complex
query. The third and final objective the user may have is to
explore the database. These final two objectives are both
facilitated by permitting the user to perform his work
incrementally and to iterate over certain steps when necessary
(ELMASRIS8S, KUNTZ89, LEONGS89) . Both the incremental
formulation of the query and the capability to easily iterate
over a step are discussed below.

The incremental formulation of a query is essential in
enabling the user to successfully communicate and formulate a
complex query (KUNTZ89, LEONG89) . Incremental query
formulation as an approach, is consistent with the way people
think when confronted with complex problems. There is a

correlation between the database users need to communicate and

43

formulate a complex query with the more general notion of
peoples need to solve complex and unfamiliar problems.

When faced with solving complex problems, people
naturally tend to break the problems into smaller, more
manageable parts. This approach is quite natural and quite
common. By considering the smaller parts of a problem a person
can overcome the general ambiguity which comes with a problem
too complex to consider as a whole. Once the person comes to
understand the component parts of a problem, he can begin to
consider the relationship between these parts. Once these
relationships are understood, the nature and comprehension of
the larger problem comes into focus. In the best case the
person is successful in understanding all the component parts
of a problem as well as all the relationships. This leads to
a complete understanding of the overall complex problem. In
the less then ideal case, the person understands only a subset
of the component parts of the problem. This caée still
provides a person with a better understanding then he started
with.

Incremental query formulation makes use of this
approach of dividing and conquering complex problems. Assume
that the user has a complex query which is not easy to
communicate. The user can specify the parts of his query which
he does understand. He can then establish the relationship
between these parts. Features 9 through 13 support incremental

formulation of the query. The proposed user interface includes

44

these features and thereby provides the user a means to
incrementally formulate his query. The interface provides this
capability in a flexible and efficient way.

The capability to easily iterate over Qquery
formulation steps must be integrated into the design of a DBMS
user interface. As the user works through the process of
formulating a complex query he must feel free to use trial and
error. If he realizes a mistake, it should be easy to go back
and try again without having to redo the work it took to get
him there. The user approaching the database with a need to
explore must be encouraged to do so. A simple and efficient
means to repeat a step with a capability to introduce a small
change does this. There are several features which should be
included in a database user interface enable and facilitate
iteration. These features are presented as features 11 through
13 below. These features all involve facilitating the action
of iterating or repeating steps while formulating the
query. (KUNTZ89, WONG82)

i. UFeature 9 : Manipulation of Data Flow to Achieve
Objective

As the user formulates his query he begins at one
place, does certain things, and then ends up with a result.
The correctness of and ease of achieving the result is in a
large part dependent on the clarity with which the user can
progress through this process. The proposed query formulation

paradigm is based on a very simple concept of data flow. The

45

“

user begins each step of his query by specifying the relations
which contain information which is relevant to his query. This
is the beginning data. The user then applies various
operations to this data. The result of these operations is
always a relation. Data has in effect flowed from the one or
two original sources to the resulting destination. This idea
of data flow is very easy for the user to grasp.
j. Feature : 10 Use of Simple Operations

As mentioned in feature 9, during the query
formulation data flows from a set of one or more relations to
a resulting relation. During this flow, some sort of operation
occurs on the data. This operation must be completely within
the control of the user. The operation must also be simple and
Clear to the user. For this reason the basic relational
algebra operations are used as a basis for these operations.
These basic operations have been augmented to enhance and
facilitate their use. These enhancements are demonstrated in
the implementation description contained in chapter 4. When
presented in a framework of data flow the actions of these
basic operations becomes very simple and clear to the user.
The user maintains his feeling of being in control and of
working with an easily understood piece of his query.

k. JFeature 11 : Piecemeal Design and Construction

of Qawry

The DBMS user interface must permit piecemeal

query formulation so as to minimize the scope the user must

46

mentally deal with at any single moment. This reflects the way
people think when confronted with a complex or unclear
problem. This notion of piecemeal construction is supported in
several ways. The user interface allows the user to save
portions of, or entire finished queries. These pieces can then
be retrieved for use in the construction of the current query
or subsequent queries. These query fragments can be linked or
glued together to prevent the need to reinvent them. This
concept of saving, manipulation and linking of query fragments
is very similar to work done by other researchers (KUNTZ89,
WONG82) . What sets this concept apart here is the way this
idea is integrated with data flow, simple operations and the
graphical environment.
l. Feature 12 : Saving and Retrieval of Previously
Defined and Commonly Used Joins
There are relationships the user observes when
viewing the database schema. These relationships are included
in the database schema because at the time of the database
design they modeled a real world relationship. An example of
this is the relationship "EMPLOYEE WORKS_FOR DEPARTMENT". In
the database schema the user observes two relations and a
relationship between them (i.e. WORKS_FOR). The user might use
this relationship between EMPLOYEE and DEPARTMENT on a
frequent basis. To prevent the user from having to keep
conducting the join operation each time he wants to use this

relationship, the saving and retrieval common Jjoins is

47

possible (KEIM91). This is similar in function to saving query
fragments as mentioned above. The difference is this separate
classification allows the aggregation of a special type of
predefined operation in order to facilitate the schema-to-
query transition forawhe user. This approach falls somewhere
between the explicit specification of joins as in SQL and the
approach proposed by Elmasri and Larson (ELMASRI85). Elmasri
and Larson propose the system automatically assume the desired
relation. Their work is discussed in more detail in Chapter 2.
The benefit with this approach is it eases the work involved
in using a relationship, while at the same time not
compromising the users sense of being in control.
m., Feature 13 : Immediate and Meaningful Feedback
As the user is formulating his query in a stepwise
fashion he must be enabled to get immediate and meaningful
feedback. After each intermediate step in the query
formulation process the user must do one of two things. Either
redo the current step or to move on to the next step.
Meaningful feedback is necessary in order to assist the user
in deciding which way to go (KUNTZ89). The proposed interface
provides two examples of this feature. The first example is
the capability to view results of a query at any point in the
process. At any point the user may request to see results
which causes the system to open a results window. In the
window the user can see the data displayed in a default report

format. This display can then either be removed from the

48

screen or retained. If retained, a representation of the state
of the query at the point of execution is retained along with
the result window. The availability of such feedback allows
the user to quickly evaluate his progress and thereby decide
if he should go on to the next step or go back and repeat the
step. This capability also promotes exploration of the
database. The user can place the results windows of two
queries side by side and hence allowing him to see the results
of the difference in the two queries.

Another example of intermediate feedback involves
the display metadata. As previously mentioned the user
canawoggle on and off the display of metadata. Also previously
mentioned was the notion that the result of every operation is
a relation. Combining these allows the user to ascertain
useful information such as the numbers of rows and columns in
his resulting relation at each Jjuncture in his query
formulation. This type of feedback serves as useful
information to the user as he tries to evaluate his progress.

4. Minimize the Effort Required of the User
Effort required of the user refers to any work which
the user must perform in order to accomplish his objective.
This includes anything which causes the user to spend time,
perform movement, or memorization. Many of the features
already mentioned serve to alleviate the effort required by

the user. Allowing selection by clicking on objects is a prime

49

example. There are several other features which should be a
part of a good DBMS GUI. These are discussed below.

n. Feature 14 : Ensure the Rarliest Detection of
Errors

When performing a task of any significant
complexity there are always a number of errors which can be
made. A person performing such a task for the first time will
make more errors than someone very familiar with the task.
This is the nature of performing queries against a relational
DBMS. A good DBMS must detect the errors as close to when they
occur as possible. This will tend to minimize the lost time
suffered by the user as a result of the error. It does not
make sense on a lengthy multi-step query to notify the user
after he is complete that he made a critical mistake in the
first step. The sooner the user finds out the less the cost to
him. In addition to detecting and notifying the user of the
errors, the interface should also provide the user with the
likely cause and potential solutions. These last two things
are not always possible as the system cannot easily predict
the users intentions. Where possible however, they should be
provided.

There are a number of ways the proposed interface
incorporates this feature. An example is seen when choosing
relations upon which to perform an operation. A unary
operation must have only one operand selected and a binary

operation must have two operands. A violation by the user

50

results in an error message, a brief explanation, and an
opportunity to correct the problem. A second example relates
to the join operation. If a user chooses two join attributes
which are of a different data type, then the system
immediately lets the user know. In this case an error message
explaining the error and a suggested fix is provided. These
are the types of errors which the user would be better off
knowing about right away. As well as alerting him while the
issue is still hot in his mind, this feature protects against
jeopardizing future steps in the query.
0. Feature 15 : Automatically Make Necessary Tools

and Information Available

A user interface for a DBMS should make the users
job as easy as possible. One way to do this is to know where
the user is at and what he 1is trying to do. With this
information the system can sometimes predict the tools and
information the user needs. This is like an assistant working
for a carpenter. If the assistant is paying attention, the
carpenter will seldom need to ask the assistant to hand him a
tool. Not having to ask and wait for a tool saves the
carpenter time. With a DBMS user interface the system is
analogous to the assistant. The user interface should provide
the user with those things he may need, without the user
explicitly having to request everything.

An example in the proposed user interface occurs

when the user requests a select operation. The user first

51

chooses a relation on the QMF work surface. The user then
clicks on "PICK ROWS"™ from the TOOL BOX menu. The user
interface then automatically provides three pop up windows.
One window is the text window where the row conditions are
displayed as they are built. The second window contains a list
of all the attributes from the chosen relation. The third
window provides a list of all the operations the user might
need to choose from (e.g., equals, greater than, less than,
and, or). At this point the user does not need to ask for
anything. All he needs to do is point and click, unless of
course the user desires to type in a constant value. Even in
the latter case the user interface can provide information as
described in the next example.

An example of automatically providing the user
with necessary information is present while formulating a
query as in the example above. Presume the user is selecting
rows and building the selection condition. If the user chooses
the attribute DEPARTMENT and then chooses the operation
EQUALS, the system immediately pops up a window containing the
names of the twelve departments in the organization. The user
is now able to avoid manually typing in the department name as
well as the memorization and occasional misspelling which
occur when humans must manually type values. This type of
valué window is not feasible in all cases due to the inherent
uniqueness in some values. Imagine working with a relation of

ten-thousand distinct employees and doing a selection on SSN.

52

A pop up window of ten-thousand values is not very helpful. In
the proposed interface, such comparisons on attributes with
twenty or fewer distinct values in the database is suggested.
A parameter such as this however, should be able to be
customized for the user. (KUNTZ89)

p. Feature 16 : Stream—-line Repetitive Actions

There are a number of actions which are frequently
performed by the user. Whenever possible a good user interface
should provide a way to cut down on the need for the user to
repeat his actions. This can be accomplished by providing
shortcuts for the veteran user or by remembering the
repetitive actions and allowing the user to re-execute them by
a single action.

A trivial yet important example in the proposed
interface involves the saving and retrieval of queries and
query fragments. The nature of queries posed by most users are
similar in structure. It saves the user a lot of time if all
he needs to do is pull up yesterday’s query and make a single
change and then re-execute it. This idea is similar in
function to that mentioned in ISIS (GOLDMANSS).

Once a user establishes a pool of frequently
required queries, significant time can be saved by pulling up
an old query and making a few changes. Whenever possible this

sort of time saving capability should be provided.

53

q. TFeature 17 : Use a Default Result Format

The display of data is a central and much used
part of the query formulation process. Display of data may
occur both during the query specification and after the query
is complete. Because of this and because it is desirable to
minimize the users effort, a user interface should make
displaying data an efficient and simple process. Concerns
about how the display of data should look, must not take place
during query specification. When the user is working through
the process of correctly formulating a query, he should not be
burdened with concerns of how the data should be displayed.
Once the query is at a desired state the user can pretty up
the display if desired. The functions related specifically to
how the data should be formatted should be separate from *he
functions of getting the correct data. This means there should
be a default display format. There should also be a means to
manipulate the format of the displayed data once the query is
defined. These two capabilities support a separation of the
query formulation process from the process of formatting the
display of data. Some interesting research has been conducted
in the area of displaying database objects, but this area is
outside the focus of this thesis (MAIER87). This is not to say
that display of results is not Jimportant to the user
performing a query. The important point is that specialized
display of data and query formulation should be conceptually

separate activities from the users perspective.

54

An example of a simple and efficient means of
displaying data is present in the proposed DBMS user
interface. The user of the Query Management Facility (QMF) is
frequently going to be looking at data through use of the
Results window. Whenever the user requests to see the results
of the query a results window is displayed with the data in a
default format. The user then has two ways of changing the
display format. One way is to sort the data. The proposed
interface allows the user to sort the data either in ascending
or descending order. The user can also indicate multiple sort
fields. The second way the user can change the display format
is by rearranging the sequence in which the attributes are
displayed. The user can for example, cause the third column of
data to be displayed in the first column, or the last column,
or in any other position. These two methods of altering the
display format are in addition to being able to move and re-
size the Result window. These last two are functions of the
window manager and are not considered a part of the user

interface design.

C. APPLICABILITY TO MULTIMEDIA DATABASE SYSTEMS

The approach taken in the multimedia database project
implies that multimedia data can be handled in the same manner
as formatted data (LUM89). From the users perspective, a given
multimedia object (e.g., photograph) is functionally no

different from textual data, such as the text representing a

55

persons street address. The user can store, query, and display
either type data. As far as the database system is concerned,
the photograph is of an abstract data type (e.g., photo)
whereas the address is of a formatted data type (e.g.,
character). The system may require specialized ways of
displaying and manipulating multimedia data. From the users
view, this fact, does not pose any special considerations
aside from those related to data display. Further discussion
of these concepts can be found in related works (LUM89,
KEIM91, MEYER-WEGNER89, KIM91).

Given the concepts mentioned above, it is easy to see that
a multimedia database is a special case (i.e., subset) of a
traditional database. This implies that all of the criteria
and features presented in this chapter are directly applicable
to the user interface for a multimedia database system. The
unique user interface characteristics required of a multimedia
database system consist of those related to data display. The
means of displaying and working with multimedia data should be
designed as consistently and functionally similar as possible
to the means used for display of formatted data. By careful
application of the features presented in this chapter, the
designer of a multimedia database user interface can be

assured that he 1s designing a good user interface.

56

IV. DESCRIPTION OF GRAPHICAL QUERY MANAGEMENT FACILITY

The proposed user interface is described by means of
figures contained in this chapter. These figures represent
what one might see on a computer screen while using the user
interface to perform database queries. First a general
description of the major functional parts of the interface are
described. This is followed by a description of a simple
query. This is intended to illustrate the basic functioning of
the Query Management Facility (QMF). After the simple query
the issue ¢f complex queries is discussed along with examples.
This chapter is completed with a discussion of the aggregate
functions. The sample database schema as well as some of the
queries used as examples, were taken from a textbook written
by Elmasri and Navathe (ELMASRI89). Modifications were made to

the schema and queries to fit the purposes of this thesis.

A. MAJOR FUNCTIONAL PARTS OF INTERFACE

To perform a database query the user enters the portion of
the interface called the QMF. When using the QMF the main
retrieval window is always displayed. This main retrieval
window is presented in Figure 1.1. When a particular database
is opened, the name of the database is displayed on the top
title bar. In Figure 1.1 this name is "COMPANY DATABASE". The

"OPEN DATABASE" button on the lower menu bar is used to either

57

open a database or to open a different database in the case
one is already open.

The "TOOL BOX" area is the place where the user goes to
select any operations he is to perform. These operations fall
into two logical groups. These groups are "table" operations
and “"get" operations. As you can see in Figure 1.1, the Tool
Box is arranged accordingly.

The TABLE OPERATIONS are performed on tables or in
relational terminology, relations. As discussed in Chapter 3,
all operations have one or more tables as input and a table as
output. The user has a scroll bar to get to operations not
shown. Those operations used most frequently are displayed
first. These are the relational selection, projection and
join. The names in the tool box are put in more simple terms
for the non-technical person (i.e., Pick Rows, Pick Columns).
These operations are followed by the basic set operations
union, intersection and difference. These work as one would
expect. The set operations are follcwed by a grouping
operator, a containment operator and then some aggregate
functions. A more thorough explanation of the behavior of
theaw operations can be achieved in the example queries which
are to follow.)

The GET OPERATIONS area contains those operations which
enable the user to go out and get a resource for use within

the query. These resources include previously defined joins,

previously saved queries, and relational tables of data. From

58

this point on, these tables of data (i.e., relations) will be
referred to as tables.

The SHOW QUERY window is the area where the user sees
objects representing his query grow from the original table or
tables to the final result of his query, which is also a
table. Scroll bars are provided to facilitate control of the
area which is actually viewed in this window.

The USER ACTION bar is an area the system uses to suggest
appropriate actions to the user. The user will not look to
this area when using the HELP option or for information when
errors are detected by the system. Separate pop-up windows are
used as help windows and error handling windows.

The use of the mentioned features, as well as the
ramainder of the features of this main window will be

demonstrated by their use in the query examples to come.

B. SIMPLE QUERY WITH INDIRECT USE OF MULTIMEDIA DATA

The simple query is a good means to illustrate the screens
a user would see while performing a database query. The query
which will be performed is: "“Retrieve the photograph and
address of the employee whose name is John Smith.

The user begins with the screen depicted in Figure 1.1.
Since in this example a database is already open, a pictorial
view of the database is displayed as illustrated in Figure

1.2. Whenever a database is open, the user automatically gets

59

the "SHOW PICTURE OF DATABASE" window (see Figure 1.2).
Details of this window will be discussed at a later point.

By considering the query, the user realizes that EMPLOYEE
is the table in the database (Figure 1.2) likely to contain
the information he is looking for. If there is doubt he could
explore the schema more to further convince himself or he
could just go ahead and choose the EMPLOYEE table and change
it later, if it proves to be wrong. Although this example is
trivial as far as queries go, the point is the user interface
is designed to expedite the work of the familiar user by
making everything easily available. It is also designed to
encourage the unfamiliar user to explore the database and use
trial and error without a big loss in efficiency.

The user places the cursor on the object labelled EMPLOYEE
(Figure 1.2) . This causes the 3able to be selected and placed
into the SHOW QUERY area of the main window. The state now is
that depicted in Figure 1.3.

The user now has the table which has rows of information,
with each row representing an employee. The user knows that he
is only interested in a subset of these rows, so he selects
the "Pick Rows" operation from the Tool Box. This action
causes an "operations"™ pop-up window and "Pick Rows Condition"
pop-up window to appear. The Operations window contains the
comparison operators and the logical connectives the user may
need in specifying the selection condition. The Pick Row

Conditions window displays the actual selection condition as

60

specified by the user. These windows are illustrated in Figure
1.4. These windows can be moved around and so forth in
accordance with the style and techniques of the window manager
the user happens to be using. The functioning of the window
manager is independent from the DBMS user interface
(HELLERS0a) .

The user now has the job of communicating which rows he is
interested in (i.e., employee named John Smith). One option
the user has to go to the get data table and get a tabular
menu of the data (i.e., attribute names) of the EMPLOYEE
table. If this were an intermediate table he was working with,
this tabular window would automatically appear in a pop-up
window. At this point in the example query, there is a better
way to choose the required attribute name. As stated, the
picture of the database schema is visible to the user. The
user goes to that window and selects the SHOW FIELDS button.
This causes the fields (i.e., attributes) for each entity to
be shown. The cardinality of the relationships could be and in
this example are selected to display the cardinality of the
relationships in the database schema. All of these features
are displayed in Figure 1.5. You can see that the selected
buttons are highlighted in figure 1.5 corresponding to the
users choice of what he wants to see displayed.

The user selects the attribute 1labelled FNAME which
corresponds to the users first name. This is shown in Figure

1.5 As the user makes this selection the attribute name is

6

placed into the Pick Row Conditions window (Figure 1.6). The
user continues to choose desired attribute names, comparison
operators, and logical connectives to build his selection
condition. The only items that must be physically typed by the
user are the attribute values to be used for comparison. In
cases where less then a certain number of distinct values
exist for an attribute, say fifteen, a pop-up window is
displayed to permit mouse selection of the desired value vice
typing. The certain number of distinct values is a user or
database administrator set parameter. This process of
communicating the selection condition progresses as indicated
in Figure 1.6. When the user is finished he clicks the cursor
back in the open area of the SHOW QUERY window. This brings
him the screen shown in Figure 1.7.

In Figure 1.7 the result of the Pick Rows operation is
indicated by a box placed below the EMPLOYEE box. The icon for
the Pick Rows operation is also displayed. If the user wants
to ever go back to modify this operation, he only needs to
click on the icon or the corresponding result box. At this
point two boxes appear in the Show Query window. Each box in
the window represents a table which can be awed for further
definition of the query. It should be noted that at this point
the user could choose to look at the intermediate results
represented by the newly created results box. He would do this
by clicking on the box and then clicking the DISPLAY RESULTS

button on the bottom menu bar.

62

The user has just the information about John Smith in the
intermediate results box. He views this information as
positioned in columns. The user does not want all the
information about John Smith, just his address and photo. To
trim the current result down to just the desired information
the user first clicks on the result box to choose it as an
operand and then chooses the PICK COLUMNS operation from the
Tool Box. These action are depicted in Figure 1.8. As he
chooses the operation a pop-up window appears with the
attribute names for the selected operand. The system is smart
enough to know the operand selected does not have a
corresponding object in the database picture, hence the
information in this window will be needed by the user to
specify the parameters of the chosen operation. This pop-up
window is shown in Figure 1.8

In Figure 1.9 the screen is shown after the user has
chosen the attribute names corresponding to the fields he is
interested in. It might be noted that the user has decided to
keep the users name in the output from the operation. When the
user is finished he clicks in the open area of the Show Query
window which results in the screen shown in Figure 1.10.

At this point the user has the results he wants from his
query. he clicks on the final result box and then selects the
DISPLAY RESULTS button on the bottom menu bar (Figure 1.11).
This causes a QUERY RESULTS window to pop up. The Query

Results window is shown in Figure 1.12.

63

Multimedia objects are shown in a consistent manner
whenever they are chosen for display. In Figure 1.12 you can
see that for the employees photo (i.e., EPHOTO), a button is
displayed in lieu of a value. Were this a voice recording or
a piece of video, the same thing would occur. To see, hear, or
cause the display of the multimedia object the user clicks the
button as indicated in Figure 1.12. This causes the
appropriate display, based on the definition of the abstract
data type corresponding to the multimedia object. In this case
the display is illustrated in Figure 1.13.

From the example provided by this simple query it can be
seen how simple the process of formulating a query is. The
user need focus on only one aspect of his query at a time. In
this example the user concentrated first on choosing an
appropriate table, then picking the desired rows, then picking
the desired columns and finally on displaying the data. The
user could have reversed the order of the row and column
operations. The point is the operations are simple, flexible
and responsive to the way the user thinks. Because of all the
graphical tools given to the user, the low-level of the
operations was not a labor intensive factor.

The marriage of the low-level operations and the graphical
capabilities allows the important benefits of low-level
operations without the drawbacks. Chapter 3 discusses this

point in far more detail.

64

C. SIMPLE QUERY WITH DIRECT USE OF MULTIMEDIA DATA

This example query demonstrates the direct use of
multimedia objects in the query specification process. The
query to perform is : "Retrieve the name and photograph of
employees wearing U.S. military uniforms". The user begins
with a screen such as that in Figure 2.1. The user realizes he
wants information about employees so he chooses the EMPLOYEE
object from the PICTURE OF DATABASE window as in the previous
example. The result from this is shown in Figure 2.2. 1In
Figure 2.2 the user has information about all the employees in
the company. The user knows he wants information on only the
employees wearing U.S. military uniforms in their photograph,
thus he chooses the PICK ROWS operation from the Tool Box.
This choice results in the screen as seen in Figure 2.3. The
user must next choose a field in the employee table on which
to operate.

Figure 2.4 illustrates the user going to the PICTURE OF
DATABASE window to select the field on which he wants to base
his row selection condition. In this case the user is shown
selecting EPHOTO (i.e., employee photo). This results in a
pop-up window entitled "MultiMedia OBJECT SELECTION". This
window is used to enable the user to enter a description of
the multimedia object he wants to select. The topic of
selecting multimedia objects is explained in a paper by Lum
(LUMBY9) and is further discussed in other papers by Kim

(KIM91) and Keim (KEIM91). How and why this technique is used

65

is not further discussed in this thesis. The interested reader
is directed to the references.

The user must enter a description to select the multimedia
objects corresponding to the photographs of employees wearing
U.S. military uniforms. The user decides to phrase the
description, "Person wearing a uniform". The user then clicks
the TEST button on the menu bar. This causes the appropriate
search and a pop-up window entitled, "MultiMedia OBJECT
SELECTION" results. This is all illustrated in Figure 2.5.
This window resulting from the search is designed to give the
user feedback on the progress of his multimedia object
selection. In Figure 2.5 you can see the window displays the
number of objects selected, in this case four. The window also
has one entry for each object selected in the search. Each
entry displays the original description which was stored with
the object. This can be used to assist the user in tailoring
his object description. Each entry also has a SELECT button.
These are all set to on (i.e., highlighted) when this window
is first displayed. The user has the choice of scrolling
through these entries and indicating which multimedia objects
he wants selected by toggling these SELECT buttons on or off.
The user can also choose the, "Try a Different Description®
button to iterate over the process of entering a description.
In this example say the user notes in Figure 2.5 that too many
objects were selected. The user also notes one of the

descriptions which mentions a guy wearing a Turkish Navy

66

uniform. This clues the user in on the fact that he was too
general and vague on his description of what objects he
wanted. The user selects the Try Different Description button
and is returned to the window for entering a description. The
user enters a different and more precise description. He then
tests the description with the result displayed as the two
left windows illustrated in Figure 2.6. In Figure 2.6, the
SHOW buttons are shown in the "on" state. This feature is
provided to allow the user a quick means of verifying the
correctness of his selected multimedia objects. The user has
all the windows shown in Figure 2.6 on his terminal screen and
is comfortable with his multimedia object selections. The user
chooses the QUIT button in the main description window which
automatically closes the child windows.

The user is returned back to the PICK ROW CONDITIONS
window as depicted in Figure 2.7. This is an example of a
user-to-system dialogue which is brought to a closure. The
user is now completed with the selection of the multimedia
objects associated with EPHOTO. Figure 2.7 indicates to the
user that in this case 15 EPHOTO objects were chosen.

The next step in this query involves the user selecting
the columns he wants to include in the results. This is shown
in Figure 2.8. The user then requests the display of the
results as shown in Figure 2.9.

Figure 2.10 shows the resulting QUERY RESULTS window. The

user now knows that his query is complete and decides that he

67

wants to adjust the display of his output. The important point
here is that the user did not have to consider the output
display during the query specification. This is kept as a
separate task.

In the example shown in Figure 2.10, the user desires to
have EPHOTO be displayed as the last column in the output
window. This is accomplished by selecting the column to move
by clicking on the attribute. The user then positions the
cursor where he wants the column to be placed and clicks the
mouse and the column gets moved. The user also wants the
output to be sorted differently. He wants to have the output
sorted by last name. To do this the user clicks the SORT
button on the lower menu bar which causes the SORT FIELDS pop-
up window as seen in Figure 2.10. The user then selects the
desired sort field or fields. Figure 2.11 illustrates the
output resulting from these changes. It also shows the display

of one of the multimedia objects.

D. COMPLEX QUERY

It is often difficult for a user who has a complex query
in mind, to precisely and accurately communicate that query to
the system. As discussed in Chapter 3, low-level simple
operations, along with the simple concept of data flow, and
the capabilities of a graphical environment make this process

easier.

68

A complex query will serve to demonstrate this idea. The
query which will be used is : "Find the names of employees who
work on all the projects controlled by department number
five".

Specifying this query in a linear programming language
such as SQL is difficult. Even with an experienced SQL user it
is difficult to specify the complex query. The user is forced
to fit his query into his understanding of what will and will
not work in SQL. Two possible SQL statements to specify this
query are shown in figure 3.1.

Figure 3.2 shows the final screen the user would see using
the QMF. When considering the query two things jump out at the
user. One his he needs all projects controlled by department
5. The two upper right boxes in Figure 3.2 show the results of
attaining projects controlled by department 5.

The second thing that the user sees he will need is a list
of the projects which each employee works on. He can see in
the picture of the database, exactly what fields are in what
tables. The user notes that the table Works_On contains both
the SSN of each employee working on a project plus the related
project number. The user simply chooses this table and groups
it on ESSN. This is a logical grouping which still results in
a relation. This special quality of being logically grouped is
pictorially represented with a meaningful picture of boxes

grouped within the result box. (Figure 3.2)

69

The user knows the box on the right contains all the
projects controlled by department 5. The user can now see that
he wants to select the groups of employees on the left which
contain all of the records in the box on the right. This means
that he chooses the CONTAINMENT operation from the Tool Box.

The containment operator interacts with the user in an
interactive style. It identifies exactly what type of
containment the user is interested in. This means the user
could choose only the groups containing exactly the same
tuples as those in the second operand. He could also choose
only the groups which contain at a minimum, all the tuples as
those in the second operand. The user could also define the
precise degree of overlap in terms of a discrete number of
tuples in the second operand which must match those in the
group in order for the group to be selected.

An additional feature which adds power to this containment
operation is the user is able to designate exact attributes
which are to be used in the containment operations definition
of "match". In this query example for instance, the user has
chosen to use only a single attribute from each group (i.e.,
PNO to match against PNUMBER) . The dialogue environment allows
for an efficient specification by the user of his desired
intent.

To complete this query the user only needs to join the

result with EMPLOYEE to pick up the employees name.

70

Another feature which will benefit the user working with
complex queries is an ability to implode selected areas of the
picture of his query. This is a way to simplify portions which
the user no longer desires to see the detail. Once imploded,
the symbol can be thought of as a black box as far as the user
is concerned. If these are needs to be considered in detail
the user is free to explode the symbol, thus retrieving the
previous level of detail. Figure 3.3 shows the pop-up window
resulting from the users choice to CHANGE DETAIL. Figure 3.4
illustrates the user circling the area of concern after which
the user clicks on DECREASE DETAIL. Fiqure 3.5 illustrates the
screen resulting from this action. As you can see, a level of
detail has become hidden. The fact that the box represents a
complex set of operations is still evident by the double
framed box. This same tool can be used to build boxes
representing complex query fragments of complex Qquery
fragments. The user is always able to go back and work with
the necessary level of detail.

A second example of a complex query is shown in Figure 4.
The query is : "List the project names for projects that
involve an employee whose last name is ‘Smith’ as a worker or
as a manager of the department that controls the project. Once
again the SQL is shown in Figure 4.1.

The feature to be shown with this example is the use of
the previously defined joins. When considering the query there

are two pieces of data (i.e., tables) that the user knows

71

immediately he needs. One is the employees who work on
projects. An unfamiliar user might go ahead and perform the
join necessary to create this table. A user who is familiar
with the database would know its a common join and thus he
would use the GET PREVIOUS JOIN operation to get a menu of
previously defined joins. He would do the same for Departments
which Control Projects. Figure 4.2 illustrates how this can
really expedite the definition of a complex query.

The use of previously defined queries works the same way.
The user can decide to save whatever queries he chooses to.
These Previous Queries can quickly be brought up and then

either modified and ran, or executed as they are.

E. AGGREGATE FUNCTIONS

The aggregate functions include such things as count, sum,
average, minimum and maximum. The provision of the aggregate
functions within the user interface is a real convenience to
the user. These functions do not impact the relational
completeness of the query expression methods of the interface.
They are merely a convenience. Such a convenience is a
necessary part of a good query interface.

The aggregate functions can be applied to any table
containing appropriate values upon which they can operate. The
sum function for example{ must have a numeric field upon which
to perform the addition operation. The more interesting case

of applying the aggregate functions occurs when they are

72

applied to a table which has been logically grouped. This case
will be used in the following example.

The example query for demonstrating use of the aggregate
functions is : "For each project, find the average salary, the
average salary of males and females, and the number of males
and females". The user begins the query with a screen as
depicted in Figure 5.1.

The user begins the query by getting a table to work with.
The user goes to the Get Operations area of the Tool Box and
chooses the GET PREVIOUS JOIN operation. From the resulting
pop-up menu the user chooses the EMPLOYEE-WORKS ON-PROJECT
join as the initial data table. By looking at the picture of
the database the meaning of and fields contained in the table
representing this join, are made clear to the user. Note that
with this one simple step the user now has all the information
he needs upon which to build his query. At this point the user
has the screen as shown in Figure 5.2.

The user has a table with a row for each case of an
employee working on a project. The user next applies the GROUP
BY operation on this table, grouping the rows by first PROJECT
and secondly SEX. This results in a SEX grouping within each
PROJECT group. The screen resulting from this grouping is
shown in Figure 5.3.

The users next action is to determine the average salary
for each project and the average salary for each sex within

each project. This is accomplished by choosing the AVERAGE

73

operation from the Tool Box. At this point the fact that the
user is applying the operation to a grouped table causes a two
step vice a one step dialogue. The first step which occurs is
user identification of the field or fields upon which to
perform. This step occurs with any application of the
function, whether with a grouped or ungrouped table. The user
specifies the target fields with a selection of the fields
from a simple pop~up menu. Only the fields which are valid for
this operation are displayed as highlighted in the pop-up
menu. This ensures the user selects only valid data types as
operands to the given aggregate function. For each field
chosen the user goes through a second step.

The second step the user goes through is necessary since
in this example the input table is logically grouped. The user
must indicate whether the operation is to be applied to the
entire table as a single logical entity or to some sub-entity.
The grouping of the table allows a combination of
possibilities. In this example the user can choose to apply
the operation to the table as a group, to groups of projects,
or to groups of sex within each project. The system is smart
enough to determine the valid possibilities thus facilitating
the users choice by offering only the valid options in a
simple pop-up menu. In this example the user applies this
operation to both to each project and to each sex group within

each project. The user then finishes applying this operation

74

which results in a screen such as that illustrated in
Figure 5.4.

In a similar fashion, the user applies the COUNT operation
to the resulting table. The result of this action is seen in
Figure 5.5.

The users only remaining action 1is to choose the
attributes he wants in the result table. This picking of
columns (i.e., relational projection) results in the screen
shown in Figure 5.6. The field names chosen for inclusion are
shown in the figure to demonstrate the types of default names
the system assigns to the attributes created by aggregate
functions. AVG_SALARY PROJ contains the average salaries for
each project while AVG_SALARY PROJ_SEX contains the average
salary for each sex within each project. In Figure 5.6 it can
be seen that the user is finished building the query and has
only to display the results.

Each of these aggregate functions is performed in an
interactive manner between the system and the user. There are
generally a number of possible ways to apply any given
aggregate function. Only valid options are presented to the
user thus minimizing guessing and possible confusion. The
dialogue permits the user to back out from where he is at any
point, or to proceed in the correct and desired direction.
Each user action is facilitated by a simple menu allowing the
user tc¢ pick from options with the use of a mouse. The user

can feel comfortable that he is choosing a valid option. By

75

o ——

walking the user through the process of applying these
aggregate functions, the system is more certain to ensure the

user gets the results which he desires.

76

3eQ TIPOWTITNN JO O8O 3IOOITPUI YITM Azend erdwys 1°T eanbix

QS ugof §f Jweu oga 34ojdwa 33 Jo ssapps pus ydeaBoryd ap RNy : X¥AND

3 RS

_Em:o Bm-:m
3SVaviva ANVdWOO - TVAIIHL13H _m_‘

v3eq RIPOWTITNN JO O8O 3IOOITPUI YatMm Azend etduys

dSYHVILVA J40 TENLOId MOHS

Z'1 eanbyx

vieq CTPOWTITON FO ®8Q IOOITPUI YITM Azend erduis €T ®oanbya

“qyuas Uqof 5] Jmeu 60q4 34ojdma ag) Jo ssppe pue ydeaSorpyud 3p RN XAAND

St Targ
1o7E

X¥3n0 MOHS

3ASVEVLVA ANVdWNOD - TVAIIHL3YH [&

w3eq STPOWTITON FO 8O IOOITPUI YITM Azend eyduys y't eanbya

‘pugay AP 24NN ¢ AYAND

SNOLLIGNOD MO

w3eq RTPOWTITON FO ©8 3IVOITPUI YITH Azend etduys ST eanbyg

‘YmS ugof sy Jweu 3oy 3a4ojduwd) Jo ssaippe pus ydeiBoroyd ays 2A1Y ¢ AUAND

A EEUNANIANNNY S URURANNNANAY
owooz) (umooz) GRRGNNNN))

[SSVYHVLVA 40 TINLOId MOHS A

81

®3%Q CTPOWTITON JO ©8O IOGITPUI YITM Azend erdmys 9°1 eanbyg

Qs ugof 5] Jmen 60qs 324ojdwa ag) Jo ssppe pus ydeBojond ap 24Ny : X¥AND

o] >

HLURNS, = TNAVNT ANV NHOf, = SWVNL

[v]
_.ﬂ SNOLLIGNOD MO MO ﬂ

w3eQ RTPOWIITNN JO ®sn 3I0OITPUI YITM Azend erduys LT exnbya

“gmg ugof 8 Jurvu soym 3£0jdwa 33 Jo ssaipps pus ydeiBojoqd ag 243402y : A¥AND

83

w3RQ RIPOWTITNH JO 980 IOGITPUI YITM Azend eyduts g8°'1 oxnbtax

"W ugof 8 Ausu eoqa 2Lojdwmd ayy Jo ss2upps pus qdesdojoqd am R0y : A¥AND

“HUSAl U SPUPIE 0) SIS IRKUNIOD MY} IVPS DLLOV ¥3aSN
___ho i

Mo D
0

Xudnd MOHS

3SVAVLIVA ANVANOD - TVAIIHLIH

v3eg RIPOWTITON FO O8N JOOITPUI YITM Axend eTdwys 6°T oxnbyx

“WPImS ugof 5 Jmwu woqa 3iojdwd ag) o ssappe pus ydeaBojoyd I 243024 : AWAND

A43N0 MOHS

X08 1001

3ASVEVYivVA ANVdNOD

= TVA3IH13H [

85

e3ed TIPOWTITNH JO ©8N FOGITPUI UITM Axend erduwys 01°'1T eanbis

“pywS Ugof 5 uwn 390qm 3940jdua Iy} Jo sEAppe pus qdesBoroyd I 40 : A¥AND

®3ed PTPOWTITAN FO ©8n IDOITPUI WITM Azend e1dwys

I1°1 eanbyax

"qmS UGOf 5 JwWBu 50gA 240jdwa 3y Jo s53ppe pue yduiBorond I .RNY Adand

A4dn0 MOHS

3Svavivd ANYdWOOD

TVAIIHLIY

87

vjeQq RIPOWTITNH JO @80 3JIOOITPUI YITH Azxend erduwys

21°1 eanbiax

WS ugof 5} JuEU 3504 2340jdwa) Jo ssPpe pas ydedooyd 3y 43Ny : AYAND

1100

[«

OS

]

(<] N >

BIINS NHOL V I8 AVO SEZT

IRINI OLOHaAX

ssmIaqv

SITIASI XYEND

I

®3iRg CTPOWTITNN JO ©8A IOOITPUI YITH Azend erduys €T°T oxnbya

LI0d s bz aTEH

[4]
J13H
[>]
[¥]
= OLOH4 A
HIINS NHOL V I8 AVO SEZT
THNT INVNI OLOHAX SSTIAAY

3 SIINSAY X¥IAND A

89

®3RQ TPOWTITNH FO O8O 3IVOITA YITM Azend eydwys 1°Z eanbig

‘smsojjun Ly *g) Supreas s3340idw o ydesSojond pus Jwmeu 3 34%09Y : X¥AND

Auan0 MOH
3ISvaviva ANVdNOD - TVAIIHLIIYH {a]

w3eq ®TPOWTITRH O e8n 3002TA YITM Lzend erduts z°'z eanbya

‘suoyun Lreim ‘s Supies s3ojdmd Jo ydeaSojoyd pus Jwmeu AP AN : XYAND

MO
3SVAVIVA ANVANOD - TVAIIHIIH [

91

3R PTPOWTITON JO O8O 3IVOITA YITM Axend erdwys

€°Z eanbid

w3ed IPOWTITNH FO O8N 003Td YITH Axend eofdwys

J
[SSVEVLVYA J40 HENLOId MOHS

¥°Z oxnbia

s
O
=)
S
O
=0
O
(=
T
=)
—
SHOHG

810/8]0

>

93

¥3R@ VTPOWTITNN JO ®8n 001Td YITM Lxend etduys S°Z exnbig

OTRENSORN
MHERSH)

PRURRCRIAROAN

Dpaaagas sl) o saquuiny
Y A

QNN
/Jﬂﬁﬂhhdc

*19{qQ JO uondisdsaq J3juy WA

“wmojun ¥ Supeam Uossag

NOLLOATAS 1DArd0 WIPINHIn _”_f

w3eq CTPOWTITNH JO o8 300xTA YITM Azend ertduwys

‘NO WEOJINN G3ABT]S

JMOBS AAVN TN BLIM AND a0
NN

LU
///ﬁ///rl

SN
,Wz.nlza,

o0t erires

“uuogun Ly °S'N) € Supivan R0SRJ

9°'Z oxnbtx

NOLLOATAS 1Odf40 SIPWRINN

El

95

w3e@ PTPOWTITON 3O O8N 300xTA YITH Lzend erduwys L°Z eanbig

v

wu A AN : AYAND

“(STOLOH4AA

SNOLLIGNOD MO¥ MO

FAR0MNE |

A¥3n0 MOHS

Niot
SONVI00 BN
v $408 XU

X08 1001

(vEViVA ANVANOD - “TVASIHLIY [

SHOIIVIZO |A

w3ed CTPOWTITNH JO ©8n 3I00ITA YITM Azend erdwis g8°Z eanbia

smaopun Ly g'() Supasam s24ojdwd jo ydeaSojoqd pus Jwsu A AN Xyand

A43N0 MOHS

¥3Ra TTPOWTITONN 3O ©8 I00ITA YITH Lzend eordwis 6°C eanbyy

‘suuojun Lmgym §Q Suprsam 532L0jdma Jo wduaBojond pus Jmws Hp 4L : A¥AND

L& 3Svavivad ANVdNOD - TVAIIHLIIY @]

»3ed CTPOWIITNH JO ©8n 3IOOITA YITM Azend erdwys 01°Z eanbyix

‘susojjun Liepym () Swasam s33L0jdwa jo yduaBojoqd pws amew ag) A0y : A¥AND

F370) Fov]

[I
[a]
TEOKD X0
A4
&
INE OIOHAX

i OIOHX pemrnges
SOTIIZ NOS
] SITOSI X¥I0D

®3eq CTPOWTITNN JO @8N 3I00ITA YITM Axend erdwys 1T1°Z eanbya

suLsojyun Ay S Supseam savkojdma Jo ydeaBoyoyd pue awrsu 3@ 3ANDHIY : XYAND

100

OLOHAX TINVNT TN

Kzeond xeTdwo)d 1°c eanbta

S Juamuedap £q pajjonuod 5333f0ad ag) [U0 Y104 Oym s3Lojdwd Jo somreu I puld : AYAND

((ONd'9 =ONd'D NV

NSS=NSS'O AYAHM
J NO S5Riom KWOUd

« 1OATAS) SLISIXdLON

anNyv
((S=NWNNaG AYIHM
103f0dd NOd4
YFENNNd

LOATAS) NI ONdd) FYIHM
g NO S¥OM NOd4
« LOATAS)

SISIXd LON J¥IHM
HAAOIdNA WOouA

FNVNT'ENVNA LOATES ¢ 108

((S = WNNd TUIHM
JLIdr0dd NOd4
YHENNND 1D373S)
SNIVLNOD
(NSSZ = NSS TYIHM
NO S>ROM NOoud

ONd 1DA713S)) JUAHM
HIAOTANE WOUd
FNVNT'GNVNS LOATAS ¢ 108

101

S yuounmedap

Azeond xe1dwo)d

2°€ eanbrg

4q pa11o21u03 5399f0ud aY) 18 U0 N10m Ogm 530401dwma Jo Sawvn M puld ¢ XUAND

3SVEVYLIvA ANVdNOD

= TVA3IH13Y [a]

102

Kzond xeo1dwod €°¢ oanbyda

S yuampsedap £q paonucd 5333foad Ig) I8 U0 YoM oqa $33Lojdmad Jo sommsu P puyd : AYAND

103

Kzond xeotdwod p € oxnbia

soweu 3P puyy : A¥ANO
edap £q pafjonuod sprfosd) [1¢ uo Y204 oym 53240jdwa jJo
S Juompedap

104

Kzond xordwo)d G°'¢c exndbta

¢ Wmaunedap £q payioIIu0d 5333{0ud) I8 U0 NI0M oYM 5IL0fdud JO SIWEH AP PUYY :

A¥and

A

A¥IN0 MOH

aSvaviva ANVdWOD - TVA3IHLIY

105

KAzond xeTdwod 1°y eanbya

<33(oad) SJ0NU0O ey Juduriiedap NP Jo J3TeusW 8 S8 JO 33304 ¥ 5% HLIAS,
S} Jwreu)su] 0y 3Lojdwid us IAjoAU} Ju) NIfoad J0) saweu 3o3fosd 2P 38T : AWAND

HLINS, =dWNVNT ANV NSS=NSSH Jd4dHM
HHAOTdNE ‘NO SAIOM WOUA
ONd J1OATAS) NI YHGWNNd
¥0

JHLINS, =dINVNT ANV
NSS =NSSYON ANV YFENNNd = NNNT AYFTHM
HHAOTINE 'LNEWLIVAEQ LOAf0dd WOUd
YFENAND LOATAS) NI YHJENNNd FATHM
LOdr0ud WNoud

TNVND LONLISIA 1L03AT13sS @ 108

((HLINS, =3NVNT ANV NSS=NSSH ANV ONd = JHEWNNd FTITHM
HHAOTINH ‘NO SXNOM 1LOFM0dYd WOUA
HNVNd LOJT1AS)
NOINN

(HLIAS, =3NVNT ANV NSS=NSSYOWN GNV JFENNNd =INNNG FUAHM
HHAOTdNH 'INFWNINVIEA ‘LOFMYd WOUS
HNVNd 1J373S): 110§

106

Azend xe1dmo) Z°'y oanbya

‘oxd 31 50Qu0d) Judun)edap 3 Jo JIFvusW © 58 20 JINI0M B 58 HLLINS
..8_.3 aureu jsu] I50yM R40jdwd us IAj0AN] Ju 5133f0ad 0§ SPWEU -3_.2.._ Fo T 8_“- : A4AND

3SvVAVLvVa ANVdWOD - TVAIIHLSIH (&l

107

suot3oung ejvbexbby 1°c exnbia

*SI{III) PUS S JO J2qUNU) pus
‘saemaj pue sajvwt Jo Liwyes Fuiaaw ap ‘Lrerws a8usaas o pug “439foad gow 04 : XYAND

ANANO MOHS
ISVAVIVA ANVAWOD - TVAIIHIIH @

108

‘sayemdj pus syyvw Jo Liwjus aBwiaaw oy ‘Aiwpes aBusaaw ap puy “)9foad Iwd 204 : AHAND

suot3joung ejebexbby

z°s eanbia

*SI{UUII) PUE SHUUI JO JIQUINU Y] pus

X43n0 MOHS

3SvaV.ivA ANVdNOOD

TVA3IHL3Y

109

suogjoung ejebexboy €°c exnbya

*S3[8UI2) PUT SHPW JO JIGUNG I} PuE
‘SqEWI) pue S JO Liwpes aBuiaaw oy ‘Liwps aBusaau o puy 999fosd eI 304 : XHAND

i) (i)

22253 A ACQ MWL

A¥3N0 MOHS
I 3ASVEVLVA ANVdNOD - TVAIIHLIH [

110

suot3oung ojebexbby y°s oxnbta

*SNId) PUB SIfSW JO JIqWnu) pus
‘saema) pus saqew Jo Lawes aBuiane I ‘Areres aBesaas o puy “pfoad Youd 404 : AUAND

111

A HD.U.SOEO
3SVAVIVA ANVANOD - TVAIIIH [

suot3oung e3ebeabby ¢°'s exnbyg

*SIUNID) PUS SHEM JO JIGWAN I} pus
‘Saewia) pae sa(wns Jo Liwes aBusans ap ‘Crupes aBusaaw 3 puy 939fosd Ped 04 : XYAND

R ALY R

ANANO MOHS
ISvavVivA ANVANOOD - TTVA3IIHLI3Y [a]

112

suotaoung e3ebexbby 9°'G exnbya

‘SIHBWIJ U SHEW JO JIQEAN Y} pus
‘Sayeusa) pus Sew Jo Lawjus aBuaans o ‘Lreres 33148 2 puy 932foad W 204 : XYAND

SNI00 10K
v M08 X8
NO SIU0M

a o TAYIN0 MOHS X08 1001
| 7] JSvavivad ANVYdNOO - TVA3IHL3Y [a

113

v. CONCLUSIONS

A. APPLICABILITY OF APPROACH

The graphical user interface developed in this thesis has
been designed as part of a research project on multimedia
database. This fact does not imply multimedia specific
limitations on the applicability of the approach. The proposed
database GUI is applicable to any relational DBMS. The goals
in researching and designing this interface included an aim at
ensuring general relational database applicability.

The storage, retrieval and manipulation of multimedia
objects can be handled nicely within a relational framework
(LUM89) . The intent of the multimedia database project is to
enable multimedia to be handled in a manner identical to
structured data. Specific multimedia data are no more than
values belonging to an abstract data type (e.g., photo). The
values simply fall within the domain of an attribute of a
relational tuple. The general user interface for a relational
DBMS need only add the special capabilities necessary for
working with multimedia data in order to be a functional
multimedia database user interface. In other words, the
functionality of a user interface for a relational multimedia
database is a superset of the functionality required for a
traditional relational DBMS. The user interface proposed in

this thesis provides such a superset.

114

B. STRENGTHS AND LIMITATIONS OF APPROACH
1. Strengths of Approach

The Query Management Facility (QMF) presented in
Chapter 4 provides the reader with a view of a good user
interface for enabling a user to express queries against a
relational database. The number one strength in the approach
presented is its foundation in sound user interface principles
and its use of the latest tools available and practical from
currently available technology. The features which make up the
interface have been carefully considered to provide the best
possible interface. The user interface meets all of the
criteria presented in Section A of Chapter 3, by which we can
evaluate a user interface. Compliance with each of i:hese
criterion is discussed in the corresponding section below.

&. Criterion 1 : The Proposed DBMS Graphical User
Interface (GUI) Must Constitute an Improvement Over Existing
DBMS Interfaces

The proposed user interface constitutes an

improvement over existing database user interfaces. This is
the most difficult criterion to argue due to its inherent
vagueness. While we do not have a standard metric by which we
can measure the proposed interface against other interfaces we
can make some general observations. These observations provide
a reasonable measure of confidence that the interface succeeds

in meeting this criterion.

115

User interfaces seen on databases today were never
designed from the ground up to take advantage of today’s
latest hardware, software, and user interface capabilities.
Most databases in use today have been around for some time.
When originally implemented these databases used the hardware
and software technology available at the time. This included
linear query languages as well as a text based interaction
style. Then hardware and software as well as experience with
man-machine interaction began to evolve. This included such
things as high resolution bit-mapped screens, the wide-spread
use of the mouse, faster processors, windowing technology,
graphics software, and graphical user interface capabilities
and concepts. The companies with existing database products
had large investments tied up in their existing software as
well as large already established customer bases. Neither of
these factors are conducive to rapid or radical evolution of
software. This scenario lead to an incremental inclusion of
pleces of technology to at leawt give the appearance with
version wupgrades, of wuser friendly, up-to-date user
interfaces. As an example, there seemed to be a time when many
of the database user interfaces were changing in order to
introduce an interface with mouse controlled selection from
pull~down or pop-up menus. The point is that user interfaces
available for databases today were not designed from the
ground up to take advantage of the latest and ever improving

technology and user interface capabilities available. The user

116

interface proposed in this thesis is a definite exception. The
observation that this interface is purposefully designed to
integrate and take advantage of the latest and greatest
capabilities is reason to argue that it is an improvement over
existing interfaces.

b. Criterion 2 : The Proposed DBMS GUI Must Include
the Integration of Applicable GUI Concepts and Capabilities

The user interface presented in this thesis

includes the integration of those GUI concepts and user
interface capabilities which contribute in a positive way to
the interface. By surveying the literature available on this
subject as well as the hardware and software available the
goal was to consider all technology available. The absence in
the user interface of such things as voice recognition and
voice synthesis is not by careless omission. The inclusion of
windowing techniques as well as the use of the mouse result
from considering their usefulness for the task. These as well
as many other user interface capabilities were considered.
Only those capabilities contributing in a positive way were
chosen to be integrated into the user interface.

¢. Criteriom 3 : The proposed DBMS GUI Must Support
A Real-World to Database Mapping Mechanism

The proposed user interface supports a real-world

to database mapping. The pictorial view of the database
provided to the user enables him to gain a comfortable feel

for the structural content of his database. The increased

117

detail which is available at the users request is helpful in
responding to the users need for more detailed information.
The actual values in the database are easy to gain access to
and database browsing is encouraged. Chapter 3 provides a more
detailed explanation of the features which contribute to
meeting this criterion.
d. Criterion 4 : The proposed DBMS GUI Must Support

Flexible Expression of Query

The user interface presented in this thesis
supports the flexible expression of the users’ query. This is
a key advantage of the "low-level, simple operation" approach
taken in this interface. Early database user interfaces were
non-graphical in nature. In such an environment anything
required of the user at a low-level necessarily implied
undesirable amounts of tedious work (i.e., key-punching). It
is no wonder that in the non-graphical environment designers
of interfaces and query as well as general purpose programming
languages decided to move away from anything low-level.

Things have changed. Graphical user interfaces are
here to stay. There must be a re-thinking of earlier decisions
to move away from low-level. In some cases earlier decisions
are still valid. GUI’s do not mean we should move from high-
level procedural languages such as Ada, back to assembly
language. In the case of database queries GUI’s do require a
re-thinking. With database queries there are advantages to the

low-level approach. The approach, for example, facilitates the

118

users mental process of expressing the complex query. Further
explanations of advantages are included in Chapter 3. The
disadvantage of low-level query expression is no longer valid.
It used to be that query expression at a level similar to the
relational algebra implied tedious, time consuming work. Now
with GUI capabilities, this process is greatly accelerated and
made more easy. The user now can in many cases point and
shoot, using the mouse. He can point at graphical objects on
the screen and at menu options. There is seldom a need to key
in anything. Additionally, the entire process is accompanied
with meaningful pictures which give the user immediate and
meaningful feedback. These factors combine in making low-level
query expression a useful and highly beneficial technique. At
this low-level, a great deal of flexibility is provided to the
user to express the query in whatever way he thinks about the
query.
e. Criterion 5 : The proposed DBMS GUI Must Comply
With Known User Interface Principles
The proposed user interface complies with known
user interface principles. Section A of Chapter 2 presents a
couple 1lists which provide a summary of the types of
principles which are commonly considered and applied to user
interface design. These 1lists include such things as
consistency, informative feedback, simple error handling, easy
reversal of actions, reduction in short-term memory load,

intuitiveness, flexibility and use of visual cues. Compliance

119

with these and other such principles is attempted throughout
the user interface which is presented. In some cases the
attempts are specifically mentioned and in many other cases,
it is obvious.

f. Criterion 6 : The Proposed DBMS GUI Must be
Extensible

The user interface presented in this thesis is
extensible to the degree a specification can be extensible.
The specification intentionally makes no reference to a
particular windowing standard, window manager, or user
interface standard. Extensibility is more important to
consider when making implementation decisions. This
specification was carefully constructed so as to make it as
implementation independent as possible. The specification
lends itself towards the modularity required in order to
ensure an extensible implementation.
2. Limitations of Approach

The user interface presented in this thesis |is
constrained by its applicability to the relational data model.
There are other data models such as the hierarchical, the
network and the object oriented data models. The decision to
assume the relational data model is not to say that these
other models are not useful and in some cases even more
suitable for certain applications. The research findings
presented in Chapter 3 are for the most part applicable to a

query management facility regardless of the underlying data

120

model. Regardless of the data model upon which a database is
built, the user must understand the relationship between the
real world and his specific database. The user must also be
given the best means of expressing his complex queries. The
user must also be given the tools to allow graphical
manipulation and simple operations to ensure his efficient and
correct formulation of queries. These, as well as many of the
other objectives in designing a relational query facility,
carry over to query facilities for other data models. The
point is that the specific interface proposed is constrained
in its applicability but the principles underlying its design
are not.

Another limitation is not so much a limitation of this
approach as it is specified, but a limitation created by the
lack of an overall user interface specification. Prior to
embarking on the query specification aspect of this thesis, it
was felt that the query specification portion of a database
user interface involved the biggest and most difficult
challenges. It is for this reason that this portion of the
interface was tackled first. The limitation stems from the
fact that the entire database user interface is not vyet
completely specified. This 1leaves the possibility that
specification and implementation of other related user
interface components of the database may run into constraints,
the solutions of which may in some way impact the design or

implementation of the Query Management Facility. This idea

121

raises the notion of whether the design specification of a
component of a larger system can be considered complete until
all the components are specified. It would be a comfortable
feeling to know that in the end all the components will
integrate nicely together. Perhaps this being part of a

research project mitigates this concern.

C. FUTURE WORK
1. Implementation of the Proposed Query Management
Facility

This thesis presents a specification for the user
interface for a query management facility of a relational
database. It remains to implement this specification. The
specification is specific in idea but not in the detail of
implementation. This lack of specifics is to enable the
implementor as much flexibility as possible in choosing the
software and hardware tools to use as well as in putting his
own touch on the finished product.

Amongst the more important implementation decisions
are those relating to software. These include the following:
What operating system and what version operating system will
be used(e.g., newest version of Unix)?, What programming
language will be used (e.g.,K&R C, ANSI C, C++)?, What
windowing system will be used (e.g.,X-window) (MANDELKERNSO0,
SHEIN90) ?, What high-level development environment if any,
will be used (MANDELKERN90, SHEIN90)?, What look and feel user

122

interface standard will be used (e.g.,Open Look, Motif)
(BOWENS90, HELLERY90a, HELLER90b)?

The implementor must also consider various hardware
decisions. Included among these are: Is this to be a multi-
platform system ?, What Input/Output devices will work with
what platforms?, What software will work on what platforms ?

A number of trade-offs will have to be made. These
trade-offs should be made in a conscious manner and documented
for future designers and maintainers. Considerations such as
portability, availability, compatibility, affordability,
learnability, and supportability will 1likely force some
painful and less then ideal decisions.

2. Design and Implementation of Remaining User Interface
Components for Database

As mentioned already there are three major facilities
which were considered (i.e.,SMF,QMF,RMF). Of these three, only
the OMF has been considered in detail. This leaves the task of
creating a detailed specification of the other two facilities.

A good user interface must contain a complete set of
good components. Each component must lend itself
synergistically to the aggregation of a complete package.
There should not be a query management facility which works
via graphical direct manipulation and a report management
facility which is based on hierarchical textual based menus.
Regardless of how good each component is, they just do not fit

together. The following list contains the common elements

123

which must be consistent throughout the database user
interface :
1. Maximum use of the graphical direct manipulation
paradigm.
2. Design which lends itself to a windowing environment.

3. Design consistent with sound user interface principles
(e.g., those mentioned in Section A of Chapter 2).

4. Design which includes the ability to work with the
Relational Data Model.

An interface component which abides by these
guidelines will integrate nicely with the query management
interface which has been proposed.

3. Continuing Incorporation of Evolving Technology

The future certainly will see continued advances in
hardware and software technology as well as new and improved
techniques for man-machine interface. The extensibility
mentioned in Criterion 6 of Chapter 3 is intended to enable
the user interface to grow and change along with this

advancing technology.

124

LIST OF REFERENCES

Agrawal R., Gehani N.H., Srinivasan J., OdeView : The
Graphical Interface to Ode, pp. 34-43, Proc. ACM SIGMOD 1990,
International Conference on Management of Data, Atlantic City,
May, 1990.

Anderson T.L., Ecklund E.F., Maier D., The PROTEUS
Bibliography : Representation and Interactive Display in
Databases, SIGMOD Record, Vol 15, No 3, September, 1986.

Bowen B., Open Look vs. Motif, The Battle for GUI Dominance,
Sun Tech Journal, Vol 3, Num 6, December 1990.

Bfown J.R., Cunningham S., Programming the User Interface,
Principles and Examples, Published by John Wiley and Sons,
1989.

Bryce D., Hull R., SNAP : A Graphics Based Schema Manager, pp.
151-164, Proc. IEEE 2nd International Conference on Data
Engineering, Los Angeles, California, February, 1986.

Codd E.F., Relational Completeness of Database Sublanguages,
In Database Systems, pp. 65-98, Prentice-Hall, 1972.

Comaford C., Graphical User Interfaces - Keep Them Sleek and
Simple, Info World, March, 1991.

Elmasri R.A., Larson J.A., A Graphical Query Facility for ER
Databases, Proc. 4th International Conference, Entity-
Relationship Approach, Chicago, October, 1985.

End User Interfaces, Introduction, SIGMOD Record, Vol 18.,
No 1, p. 23, March, 1989.

Goldman K.J., Goldman S.A., Kanellakis P.C., 2donik S.B.,
ISIS: Interface for a Semantic Information System, pp. 328-
342, ACM SIGMOD Proceedings of the International Conference on
the Management of Data, Austin, Texas, May, 1985.

Gyssens M., Paredaens J., Gucht D.V., A Graph-Oriented Object
Model for Database End-User Interfaces, pp. 24-33, Proc. ACM
SIGMOD 1990, International conference on Management of Data,
Atlantic City, May, 1990.

125

Heller D., Look & Feel, Sun Tech Journal, Vol 3, Num 6,
December 1990 (a).

Heller D., Objects and Widgets, Sun Tech Journal, Vol 3, Num
6, December 1990(b).

Keim D., Kim K.C., Lum V.Y., A Friendly and Intelligent
Approach to Data Retrieval in a Multimedia Database, Tech
Report NPSCS-91-010, Computer Science Department, Naval
Postgraduate School, Monterey, California, March, 1991.

Kim K.C., Lum V.Y., Towards Intelligent Data Retrieval 1in
Multimedia Databases, Tech Report NPSCS-91-009, Computer
Science Department, Naval Postgraduate School, February, 1991.

Kuntz M., Melchert R., Pasta-3’s Graphical Query Language:
Direct Manipulation, Coopertive (Queries, Full Expressive
Power, pp. 97-105, Proc. of 15th International Conference on
Very Large Data Bases, Amsterdam, The Netherlands, August,
19889.

Leong M.K., Sam S., Narasimhalu D., Towards a Visual Language
for an Object Oriented Multi-Media Database System, Visual
Database Systems, Elsevier Science Publishers B. V. (North-
Holland), 1989.

Lum V.Y., Meyer-Wegner K., A Multimedia Database Management
System Supporting Contents Search In Media Data, Technical
Report, NPS52-89-020, Computer Science Department, Naval
Postgraduate School, Monterey, California, March, 1991.

Maier D., Nordquist P., Grossman M., Displaying Database
Objects, pp. 15-30, Proc. of the 1st International Conference
on Expert Database Systems, Charleston, South Carolina, April,
1986.

Mandelkern D., A Guide to High-Level User Interface
Development Tools, Sun Expert, Vol 1, Num 3, January, 1990.

Meyer-Wegner K., Lum V.Y., Wu C.T., Image Management in a
Multimedia Database System, Proc. of the IFIP TC 2/WG 2.6
Working Conference on Visual Database Systems, Tokyo, Japan,
3-7 April, 1989.

Miyao J., Hirakawa N., Kikuno T., Yoshida N., Design of a Form
Interface Language in a Database System Aide, pp. 26-27, Proc.
of the IEEE Workshop on Languages for Automation, Vienna,
Austria, August, 1987.

126

-4

Miyao J., Tominaga K., Kikuno T., Yoshida N., Design of a High
Level Query Language For End Users, pp. 27-29, Proc. of the
IEEE Workshop on Languages for Automation, Kent Ridge,
Singapore, August, 1986.

Rogers T.R., Cattell G.G., Entity-Relationship Database User
Interfaces, Readings in Database Systems, Ed. by Stonebraker
M., 1988.

Shein B., Primal Screens, Sun Expert, Vol 1, Num 3, January,
1990.

Shneiderman B., Designing the User Interface, Published by
Addison-Wesley, 1987.

Shu N.C., Visual Programming : Perspectives and Approaches,
IBM Systems Journal, Vol 28, No 4, 1989.

Smith S.L., Mosier J.N., Guidelines for Designing User
Interface Software, Report prepared by Mitre Corporation for
the USAF, ESD-TR-86-278, August, 1986.

Ullman J.D., Principles of Database Systems, Computer Science
Press, 1982.

Wartik S.P., Penedo M.H., FILLIN : A Reusable Tool for Form-
Oriented Software, 1EEE Software 6, No 3, 1986.

Wegner L.M., ESHER - Interactive. Visual Handling of Complex
Objects in the Extended .econd NF Database Model, 1989, Visual
Database Systems, Elsevier Science Publishers B. V. (North-
Holland), 1989.

Wong H.K.T., Kuo 1., GUIDE : Graphical User Interface For
Database Exploration, pp. 22-32, Proc. of 8th Conference on
Very Large Databases, Mexico City, 1982.

Wu C.T., Hsiao D.K., Implementation of Visual Database
Interface Using an Object Oriented Language, Proc. of the IFIP
TC 2/WG 2.6 Working Conference on Visual Database Systems,
Tokyo, Japan, 3-7 April, 1989.

2donik S.B., Maier D., Interfaces, Introduction to Chapter 8,
Readings in Object-Oriented Database Systems, Morgan Kaufmann
Publishers, Inc., 1990.

Zhang 2.Q., Mendelzon A.0., A Graphical Query Language for
Entity-Relationship Databases, Entity-Relationship Approach to
Software Engineering, Elsevier Science Publishers B. V. (North
Holland), 1983.

127

T 2loof M., Query by Example, pp. 431-438, AFIPS, Proceedings of
the National Computer Conference, Volume 44, 1975,

128

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Dudley Knox Library

Code 052

Naval Postgraduate School
Monterey, California 93943-5100

Center for Naval Analysis
4401 Ford Ave.
Alexandria, Virginia 22302-0268

John Maynard

Code 42

Command and Control Departments
Naval Ocean Systems Center

San Diego, California 92152

Dr. Sherman Gee

ONT-221

Chief of Naval Research

880 N. Quincy Street
Arlington, Virginia 22217-5000

Leah Wong

Code 443

Command and Control Departments
Naval Ocean Systems Center

San Diego, California 92152

Professor Vincent Y. Lum
Code CsLm

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

129

Capt. Charles B. Peabody
Unit 2, Bramber II,
Rt 16B, Rochester, NH 03867

Professor C. Thomas Wu

Code CsWu

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

Dr. Bernhard Holtkamp

University of Dortmund

Software Technology

P.O. Box 500

D-4600 Dortmund 50 / GERMANY

Professor Klaus Meyer-Wegener
University of Erlangen-Nuernberg
IMMD VI, Martensstr. 3,

5250 Erlangen / GERMANY

Commandant of the Marir.e Corps
Code TE 06

Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

130

